首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2081篇
  免费   138篇
  2219篇
  2022年   27篇
  2021年   36篇
  2020年   31篇
  2019年   43篇
  2018年   54篇
  2017年   40篇
  2016年   55篇
  2015年   96篇
  2014年   79篇
  2013年   148篇
  2012年   178篇
  2011年   141篇
  2010年   86篇
  2009年   71篇
  2008年   116篇
  2007年   130篇
  2006年   105篇
  2005年   97篇
  2004年   106篇
  2003年   90篇
  2002年   83篇
  2001年   26篇
  2000年   25篇
  1999年   25篇
  1998年   22篇
  1997年   16篇
  1996年   15篇
  1995年   14篇
  1994年   14篇
  1992年   8篇
  1991年   9篇
  1990年   10篇
  1989年   8篇
  1987年   7篇
  1986年   15篇
  1985年   17篇
  1984年   11篇
  1982年   7篇
  1981年   13篇
  1980年   7篇
  1979年   12篇
  1978年   7篇
  1977年   9篇
  1975年   10篇
  1974年   7篇
  1973年   9篇
  1970年   7篇
  1969年   7篇
  1968年   7篇
  1967年   11篇
排序方式: 共有2219条查询结果,搜索用时 15 毫秒
171.
Summary Morphological alterations induced by dehydroepiandrosterone (DHA) were studied in polycystic mouse ovaries (PCO). Treated mice showed ovulatory failure and cystic changes; cysts and follicles in various stages of growth and atresia were present although corpora lutea were absent. The levels of testosterone, dihydrotestosterone, 3- and 3-androstanediol, estrone and androstenedione increased, whereas estradiol was not detectable.The ultrastructure of granulosa cells in healthy and atretic follicles was similar to that of control animals, although the membrana granulosa in cysts was reduced to a monolayer of flattened cells. The theca interna of healthy and atretic follicles and ovarian cysts showed ultrastructural signs of abnormal steroidogenic stimulation.No significant differences (0.7<P<0.8) were found between the extensive surface area of gap junctions of healthy follicles of control and DHA-treated animals. On the P-face of granulosa cells of large healthy follicles, meandering strands of tight junctional particles were observed; their average length was significantly longer than those in healthy follicles of control animals (P<0.001). This increase was probably related to the large amounts of androgens present in the treated animals.Theca interna cells possessed small gap junctions; no significant differences (P>0.9) in gap-junction surface area were observed between DHA-treated and control animals. These results suggest that the size of gap junctions is probably unrelated to the steroidogenic activities of theca cells.The following trivial names have been used: Dihydrotestosterone: 5-androstan 17 ol-13 one; 3-androstanediol: 5-androstan 3,17 diol; 3-androstanediol: 5-androstan 3,17 diol  相似文献   
172.
The ability of wild indigenous legumes to form root nodules capable of biological nitrogen (N2) fixation has rarely been demonstrated for species in natural ecosystems in large parts of Europe. In order to understand and manage these ecosystems, it is important to demonstrate nodulation across a diverse range of environments, sites and climates. This study surveyed nodulation at a number of sites in Scotland and Sweden. Presence of nodules was noted and nodule structure and indicators of nitrogen fixation capacity were assessed using light and transmission electron microscopy. Soils from several sites were also sampled for carbon and nitrogen analysis. The collections comprised 24 species in Scotland, and 30 taxa in Sweden; 17 of these in common for both countries. Highest species numbers occurred in meadows, farmland margins, hedgerows, roadsides and wasteland. Coastal sites and sites in the mountainous region above the Arctic Circle hosted several rare species. All sampled species had features of N2-fixing nodules such as pink colour (leghaemoglobin) when dissected and bacteroids. Nodule structure for a number of species is here reported for the first time and presence of the N2-fixing enzyme nitrogenase is demonstrated in three previously not studied Swedish legume species. North European legumes may make significant contributions to the N-budgets of their ecosystems. Such species (and their symbionts) represent unique germplasm that may be adopted to empower advances in agriculture and conservation aimed at mitigation and adaptation to the effects of climate change.  相似文献   
173.
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a natural phytoalexin found in grapes and wine. It has antioxidant and antiproliferative activities, and has been shown to induce NAD(P)H:quinone oxidoreductase, also known as DT-diaphorase, in cultured mouse hepatoma cells. DT-diaphorase is a detoxifying enzyme for quinone-containing substances, due to its ability to prevent their one-electron reduction and the consequent generation of reactive oxygen species (ROS). The aim of the present study was to investigate whether oral administration of trans-resveratrol to guinea pigs (60 mg/l in tap water for 16 days, ad libitum) increases cardiac DT-diaphorase and, consequently, reduces the response of isolated atria to 2-methyl-1,4-naphthoquinone (menadione), the positive inotropic effect of which is related to the amount of ROS generated by its cardiac metabolism. In the cardiac tissue of resveratrol-treated animals, DT-diaphorase activity was significantly higher than that measured in control animals, the V(max) of the enzyme reaction being 75.47 +/- 3.87 and 50.73 +/- 0.63 nmoles/mg protein/min, respectively (p < 0.05). Resveratrol administration also significantly increased the activity of cardiac catalase (32.20 +/- 2.39 vs. 25.14 +/- 3.85 units/mg protein in treated and control animals, respectively; p < 0.001). As a consequence, menadione metabolism by the cardiac homogenate obtained from resveratrol-treated animals generated a smaller amount of ROS and, in electrically driven left atria, menadione produced a significantly lower increase in the force of contraction than in atria isolated from control animals. These results indicate that oral administration of resveratrol exerts cardioprotection against ROS-mediated menadione toxicity.  相似文献   
174.
175.
176.
A salt‐tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p‐nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three‐dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat‐resistant features. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:890–899, 2015  相似文献   
177.
Cell membranes undergo continuous curvature changes as a result of membrane trafficking and cell motility. Deformations are achieved both by forces extrinsic to the membrane as well as by structural modifications in the bilayer or at the bilayer surface that favor the acquisition of curvature. We report here that a family of proteins previously implicated in the regulation of the actin cytoskeleton also have powerful lipid bilayer-deforming properties via an N-terminal module (F-BAR) similar to the BAR domain. Several such proteins, like a subset of BAR domain proteins, bind to dynamin, a GTPase implicated in endocytosis and actin dynamics, via SH3 domains. The ability of BAR and F-BAR domain proteins to induce tubular invaginations of the plasma membrane is enhanced by disruption of the actin cytoskeleton and is antagonized by dynamin. These results suggest a close interplay between the mechanisms that control actin dynamics and those that mediate plasma membrane invagination and fission.  相似文献   
178.
Cell migration is dependent on the control of signaling events that play significant roles in creating contractile force and in contributing to wound closure. We evaluated wound closure in fibroblasts from mice overexpressing (TgPED) or lacking ped/pea-15 (KO), a gene overexpressed in patients with type 2 diabetes. Cultured skin fibroblasts isolated from TgPED mice showed a significant reduction in the ability to recolonize wounded area during scratch assay, compared to control fibroblasts. This difference was observed both in the absence and in the presence of mytomicin C, an inhibitor of mitosis. In time-lapse experiments, TgPED fibroblasts displayed about twofold lower velocity and diffusion coefficient, as compared to controls. These changes were accompanied by reduced spreading and decreased formation of stress fibers and focal adhesion plaques. At the molecular level, TgPED fibroblasts displayed decreased RhoA activation and increased abundance of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2). Inhibition of ERK1/2 activity by PD98059 restored RhoA activation, cytoskeleton organization and cell motility, and almost completely rescued wound closure of TgPED fibroblasts. Interestingly, skin fibroblasts isolated from KO mice displayed an increased wound closure ability. In vivo, healing of dorsal wounds was delayed in TgPED and accelerated in KO mice. Thus, PED/PEA-15 may affect fibroblast motility by a mechanism, at least in part, mediated by ERK1/2.  相似文献   
179.
When exposed to stress-provoking environmental conditions such as those of ground waters, many medically important bacteria have been shown to be capable of activating a survival strategy known as the viable but non-culturable (VBNC) state. In this state bacteria are no longer culturable on conventional growth media, but the cells maintain their viability and pathogenicity genes/factors and can start dividing again, in a part of the cell population, upon restoration of favourable environmental conditions. Little is known about the genetic mechanisms underlying the VBNC state. In this study we show evidence of involvement of the rpoS gene in persistence of Escherichia coli in the VBNC state. The kinetics of entry into the non-culturable state and duration of cell viability were measured in two E. coli mutants carrying an inactivated rpoS gene and compared with those of the parents. For these experiments, laboratory microcosms consisting of an artificial oligotrophic medium incubated at 4 degrees C were used. The E. coli parental strains reached the non-culturable state in 33 days when the plate counts were evaluated on Luria-Bertani agar containing sodium pyruvate, whereas cells of the rpoS mutants lost their culturability in only 21 days. Upon reaching unculturability the parents yielded respiring cells and cells with intact membranes for at least the next three weeks and resuscitation was allowed during this time. In contrast, the RpoS- mutant cells demonstrated intact membranes for only two weeks and a very restricted (<7 days) resuscitation capability. Guanosine 3',5'-bispyrophosphate (ppGpp) acts as a positive regulator during the production and functioning of RpoS. A mutant deficient in ppGpp production behaved like the rpoS mutants, while overproducers of ppGpp displayed a vitality at least comparable to that of RpoS+ strains. These results suggest that the E. coli parental strains enter the VBNC state which lasts for, at least, three weeks, after which apparently all the cells die. The rpoS mutants do not activate this survival strategy and early die. This implies involvement of the rpoS gene in E. coli persistence in the VBNC state.  相似文献   
180.
Biogenesis and function of the lipidic structures of pollen grains   总被引:31,自引:0,他引:31  
 Pollen grains contain several lipidic structures, which play a key role in their development as male gametophytes. The elaborate extracellular pollen wall, the exine, is largely formed from acyl lipid and phenylpropanoid precursors, which together form the exceptionally stable biopolymer sporopollenin. An additional extracellular lipidic matrix, the pollen coat, which is particularly prominent in entomophilous plants, covers the interstices of the exine and has many important functions in pollen dispersal and pollen-stigma recognition. The sporopollenin and pollen coat precursors are both synthesised in the tapetum under the control of the sporophytic genome, but at different stages of development. Pollen grains also contain two major intracellular lipidic structures, namely storage oil bodies and an extensive membrane network. These intracellular lipids are synthesised in the vegetative cell of the pollen grain under the control of the gametophytic genome. Over the past few years there has been significant progress in elucidating the composition, biogenesis and function of these important pollen structures. The purpose of this review is to describe these recent advances within the historical context of research into pollen development. Received: 1 November 1997 / Revision accepted: 3 February 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号