首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   122篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   7篇
  2013年   6篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   12篇
  2005年   3篇
  2004年   10篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   7篇
  1999年   6篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   5篇
  1988年   3篇
  1986年   3篇
  1984年   1篇
  1983年   5篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
91.
PTX3 is a long pentraxin of the innate immune system produced by different cell types (mononuclear phagocytes, dendritic cells, fibroblasts and endothelial cells) at the inflammatory site. It appears to have a cardiovascular protective function by acting on the immune-inflammatory balance in the cardiovascular system. PTX3 plasma concentration is an independent predictor of mortality in patients with acute myocardial infarction (AMI) but the influence of PTX3 genetic variants on PTX3 plasma concentration has been investigated very little and there is no information on the association between PTX3 variations and AMI. Subjects of European origin (3245, 1751 AMI survivors and 1494 controls) were genotyped for three common PTX3 polymorphisms (SNPs) (rs2305619, rs3816527, rs1840680). Genotype and allele frequencies of the three SNPs and the haplotype frequencies were compared for the two groups. None of the genotypes, alleles or haplotypes were significantly associated with the risk of AMI. However, analysis adjusted for age and sex indicated that the three PTX3 SNPs and the corresponding haplotypes were significantly associated with different PTX3 plasma levels. There was also a significant association between PTX3 plasma concentrations and the risk of all-cause mortality at three years in AMI patients (OR 1.10, 95% CI: 1.01–1.20, p = 0.02). Our study showed that PTX3 plasma levels are influenced by three PTX3 polymorphisms. Genetically determined high PTX3 levels do not influence the risk of AMI, suggesting that the PTX3 concentration itself is unlikely to be even a modest causal factor for AMI. Analysis also confirmed that PTX3 is a prognostic marker after AMI.  相似文献   
92.
We reported previously that the capsid protein (CP) of Potato virus A (PVA) is phosphorylated both in virus-infected plants and in vitro. In this study, an enzyme that phosphorylates PVA CP was identified as the protein kinase CK2. The alpha-catalytic subunit of CK2 (CK2alpha) was purified from tobacco and characterized using in-gel kinase assays and liquid chromatography-tandem mass spectrometry. The tobacco CK2alpha gene was cloned and expressed in bacterial cells. Specific antibodies were raised against the recombinant enzyme and used to demonstrate the colocalization of PVA CP and CK2alpha in infected tobacco protoplasts. A major site of CK2 phosphorylation in PVA CP was identified by a combination of mass spectrometric analysis, radioactive phosphopeptide sequencing, and mutagenesis as Thr-242 within a CK2 consensus sequence. Amino acid substitutions that affect the CK2 consensus sequence in CP were introduced into a full-length infectious cDNA clone of PVA tagged with green fluorescent protein. Analysis of the mutant viruses showed that they were defective in cell-to-cell and long-distance movement. Using in vitro assays, we demonstrated that CK2 phosphorylation inhibited the binding of PVA CP to RNA, suggesting a molecular mechanism of CK2 action. These results suggest that the phosphorylation of PVA CP by CK2 plays an important regulatory role in virus infection.  相似文献   
93.
The cytochrome aa(3)-type quinol oxidase from the archaeon Acidianus ambivalens and the ba(3)-type cytochrome c oxidase from Thermus thermophilus are divergent members of the heme-copper oxidase superfamily of enzymes. In particular they lack most of the key residues involved in the proposed proton transfer pathways. The pumping capability of the A. ambivalens enzyme was investigated and found to occur with the same efficiency as the canonical enzymes. This is the first demonstration of pumping of 1 H(+)/electron in a heme-copper oxidase that lacks most residues of the K- and D-channels. Also, the structure of the ba(3) oxidase from T. thermophilus was simulated by mutating Phe274 to threonine and Glu278 to isoleucine in the D-pathway of the Paracoccus denitrificans cytochrome c oxidase. This modification resulted in full efficiency of proton translocation albeit with a substantially lowered turnover. Together, these findings show that multiple structural solutions for efficient proton conduction arose during evolution of the respiratory oxidases, and that very few residues remain invariant among these enzymes to function in a common proton-pumping mechanism.  相似文献   
94.
Electrons were discretely injected into oxidized cytochrome c oxidase in liposomes by laser flash excitation of bound ruthenium [II] bispyridyl, and the membrane potential was recorded by time-resolved electrometry. Membrane potential is generated in a fast phase when an electron is transferred from the excited dye, via the CuA center, to heme a at a relative dielectric depth d inside the membrane [Zaslavsky, D., Kaulen, A. D., Smirnova, I. A., Vygodina, T., and Konstantinov, A. A. (1993) FEBS Lett. 336, 389-393]. Subsequently, membrane potential may develop further in a slower event, which is due to proton transfer into the enzyme from the opposite side of the membrane [Ruitenberg, M., Kannt, A., Bamberg, E., Ludwig, B., Michel, H., and Fendler, K. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 4632-4636]. Here, we confirm that injection of the first electron into the fully oxidized cytochrome c oxidase from Paracoccus denitrificans is associated with a fast electrogenic 11 micros phase, but there is no further electrogenic phase up to 100 milliseconds when special care is taken to ensure that only fully oxidized enzyme is present initially. A slower electrogenic 135 micros phase only becomes apparent and grows in amplitude upon increasing the number of light flashes. This occurs in parallel with a decrease in amplitude of the 11 micros phase and correlates with the number of enzyme molecules that are already reduced by one electron before the flash. The electrogenic 135 micros phase does not appear with increasing flash number in the K354M mutant enzyme, where electron and proton transfer into the binuclear center is delayed. We conclude that the 135 micros phase, and its associated proton uptake, take place on electron injection into enzyme molecules where the binuclear heme a3-CuB site is already reduced by one electron, and that it is accompanied by oxidation of heme a with a similar time constant. Reduction of heme a is not associated with electrogenic proton uptake into the enzyme, neither in the fully oxidized nor in the one-electron-reduced enzyme. The extent of the electrogenic 135 micrcos phase also rules out the possibility that reduction of the binuclear center by the second electron would be coupled to proton translocation in addition to the electrogenic uptake of a proton.  相似文献   
95.
Poty- and picornaviruses share similar genome organizations and polyprotein processing strategies. By analogy to picornaviruses it has been proposed that the genome-linked protein VPg may serve as a primer for genome replication of potyviruses. The multifunctional VPg of potato virus A (PVA; genus Potyvirus) was found to be uridylylated by NIb, the RNA polymerase of PVA. The nucleotidylation activity of NIb is more efficient in the presence of Mn(2+) than Mg(2+) and does not require an RNA template. Our results suggest that the nucleotidylation reaction exhibits weak preference for UTP over the other NTPs. An NTP-binding experiment with oxidized [alpha-(32)P]UTP revealed that PVA VPg contains an NTP-binding site. Deletion of a 7-amino acid-long putative NTP-binding site from VPg reduced nucleotide-binding capacity and debilitated uridylylation reaction. These results provide evidence that VPg may play a similar role in RNA synthesis of potyviruses as it does in the case of picornaviruses.  相似文献   
96.
Integrins are transmembrane receptors that are known to interact with the extracellular matrix and to be required for migration, proliferation, differentiation and apoptosis. We have generated mice with a neural crest cell-specific deletion of the beta1-integrin gene to analyse the role of beta1-integrins in neural crest cell migration and differentiation. This targeted mutation caused death within a month of birth. The loss of beta1-integrins from the embryo delayed the migration of Schwann cells along axons and induced multiple defects in spinal nerve arborisation and morphology. There was an almost complete absence of Schwann cells and sensory axon segregation and defective maturation in neuromuscular synaptogenesis. Thus, beta1-integrins are important for the control of embryonic and postnatal peripheral nervous system development.  相似文献   
97.
The X-ray structures of several haem-copper oxidases now at hand have given important constraints on how these enzymes function. Yet, dynamic data are required to elucidate the mechanisms of electron and proton transfer, the activation of O(2) and its reduction to water, as well as the still enigmatic mechanism by which these enzymes couple the redox reaction to proton translocation. Here, some recent observations will be briefly reviewed with special emphasis on the functioning of the so-called D- and K-pathways of proton transfer. It turns out that only one of the eight protons taken up by the enzyme during its catalytic cycle is transferred via the K-pathway. The D-pathway is probably responsible for the transfer of all other protons, including the four that are pumped across the membrane. The unique K-pathway proton may be specifically required to aid O-O bond scission by the haem-copper oxidases.  相似文献   
98.
The optical spectrum of heme a is red-shifted in aa(3)-type cytochrome c oxidases compared to isolated low-spin heme A model compounds. Early spectroscopic studies indicated that this may be due to hydrogen-bonding of the formyl group of heme a to an amino acid in the close vicinity. Here we show that most of the optical spectral shift of native heme a is due to a hydrogen-bonding interaction between the formyl group and arginine-54 in subunit I of cytochrome aa(3) from Paracoccus denitrificans, and that a smaller part is due to an electrostatic interaction between the D ring propionate of heme a and arginine-474.  相似文献   
99.
We have used cryogenic difference FTIR and time-resolved step-scan Fourier transform infrared (TR-FTIR) spectroscopies to explore the redox-linked proton-pumping mechanism of heme-copper respiratory oxidases. These techniques are used to probe the structure and dynamics of the heme a(3)-Cu(B) binuclear center and the coupled protein structures in response to the photodissociation of CO from heme Fe and its subsequent binding to and dissociation from Cu(B). Previous cryogenic (80 K) FTIR CO photodissociation difference results were obtained for cytochrome bo(3), the ubiquinol oxidase of Escherichia coli [Puustinen, A., et al. (1997) Biochemistry 36, 13195-13200]. These data revealed a connectivity between Cu(B) and glutamic acid E286, a residue which has been implicated in proton pumping. In the current work, the same phenomenon is observed using the CO adduct of bovine cytochrome aa(3) under cryogenic conditions, showing a perturbation of the equivalent residue (E242) to that in bo(3). Furthermore, using time-resolved (5 micros resolution) step-scan FTIR spectroscopy at room temperature, we observe the same spectroscopic perturbation in both cytochromes aa(3) and bo(3). In addition, we observe evidence for perturbation of a second carboxylic acid side chain, at higher frequency in both enzymes at room temperature. The high-frequency feature does not appear in the cryogenic difference spectra, indicating that the perturbation is an activated process. We postulate that the high-frequency IR feature is due to the perturbation of E62 (E89 in bo(3)), a residue near the opening of the proton K-channel and required for enzyme function. The implications of these results with respect to the proton-pumping mechanism are discussed. Finally, a fast loss of over 60% of the Cu(B)-CO signal in bo(3) is observed and ascribed to one or more additional conformations of the enzyme. This fast conformer is proposed to account for the uninhibited reaction with O(2) in flow-flash experiments.  相似文献   
100.
A protein with a tetragonal pattern, defined as RS protein, was found on the wall surface of an alkaline phosphatase secretion-deficient mutant (NM 105) of Bacillus licheniformis 749/C. The protein was present on the wall surface of the exponential-growth-phase cells, but at the stationary growth phase it was overproduced and hypersecreted. This protein was precipitated to homogeneity from the culture fluid by 80% ammonium sulfate saturation and chilled acetone. The molecular mass of the protein was 98 kilodaltons, and it had a single subunit in a sodium dodecyl sulfate gel. Specific anti-RS antibody was generated in rabbits and used to immunolabel the RS protein on the cells at different growth phases. In early-exponential-growth-phase cells, the outside surface of the wall, the cytoplasm, and the inside surface of the cytoplasmic membrane were labeled. In stationary-growth-phase cells, the cytoplasm was poorly labeled, but the labeling on the outside surface of the wall was high. AB. licheniformis NM 105 gene library was made by using the lambda phage EMBL3. The RS protein expression from this gene library was detected by a modified autoradiographic procedure. One of the amplified RS protein-positive plaques (4213-1) containing recombinant DNA was chosen, and the restriction map of this DNA was prepared. The RS protein expressed in Escherichia coli NM 539 infected with 4213-1 recombinant phage had a lower molecular mass than the purified authentic RS protein. The 4.5-kilobase-pair (kbp) SalI-EcoRI fragment of the recombinant DNA was cloned in the shuttle plasmid pMK4 to construct pMK462, which was expressed in B. subtilis MI112 and produced the RS protein identical in molecular mass to the purified authentic RS protein. The RS protein expression was also demonstrated in cryosections of transformed E. coli and B. subtilis cells by immunoelectron microscopy. The 1.2-kbp SalI-HindIII and 1.8-kbp HindIII-HindIII recombinant DNA restriction enzyme fragments, respectively, from the right of the restriction map produced anti-RS antibody cross-reacting proteins. The expression of the 1.2-kbp SalI-HindIII DNA fragment cloned in pUC8 could be induced with isopropyl-beta-D-thiogalactopyranoside. The 1.8-kbp DNA restriction fragment hybridized with both the chromosomal DNA of strain NM 105 and the recombinant phage 4213-1 DNA. The RS gene expression was finally demonstrated in transformed E. coli 539 cells by in situ hybridization of frozen thin sections with the 1.8-kbp HindIII biotin-dATP probe and immunolabeling these with anti-biotin immunoglobulin G and protein A-gold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号