首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   22篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   13篇
  2013年   20篇
  2012年   10篇
  2011年   15篇
  2010年   15篇
  2009年   13篇
  2008年   25篇
  2007年   11篇
  2006年   8篇
  2005年   8篇
  2004年   10篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1965年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
61.

Background

Sex-determining systems have evolved independently in vertebrates. Placental mammals and marsupials have an XY system, birds have a ZW system. Reptiles and amphibians have different systems, including temperature-dependent sex determination, and XY and ZW systems that differ in origin from birds and placental mammals. Monotremes diverged early in mammalian evolution, just after the mammalian clade diverged from the sauropsid clade. Our previous studies showed that male platypus has five X and five Y chromosomes, no SRY, and DMRT1 on an X chromosome. In order to investigate monotreme sex chromosome evolution, we performed a comparative study of platypus and echidna by chromosome painting and comparative gene mapping.

Results

Chromosome painting reveals a meiotic chain of nine sex chromosomes in the male echidna and establishes their order in the chain. Two of those differ from those in the platypus, three of the platypus sex chromosomes differ from those of the echidna and the order of several chromosomes is rearranged. Comparative gene mapping shows that, in addition to bird autosome regions, regions of bird Z chromosomes are homologous to regions in four platypus X chromosomes, that is, X1, X2, X3, X5, and in chromosome Y1.

Conclusion

Monotreme sex chromosomes are easiest to explain on the hypothesis that autosomes were added sequentially to the translocation chain, with the final additions after platypus and echidna divergence. Genome sequencing and contig anchoring show no homology yet between platypus and therian Xs; thus, monotremes have a unique XY sex chromosome system that shares some homology with the avian Z.  相似文献   
62.
Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are competing microbial nitrate-reduction processes. The occurrence of DNRA has been shown to be effected qualitatively by various parameters in the environment. A more quantitative understanding can be obtained using enrichment cultures in a laboratory reactor, yet no successful DNRA enrichment culture has been described. We showed that a stable DNRA-dominated enrichment culture can be obtained in a chemostat system. The enrichment was based on the hypothesis that nitrate limitation is the dominant factor in selecting for DNRA. First, a conventional denitrifying culture was enriched from activated sludge, with acetate and nitrate as substrates. Next, the acetate concentration in the medium was increased to obtain nitrate-limiting conditions. As a result, conversions shifted from denitrification to DNRA. In this selection of a DNRA culture, two important factors were the nitrate limitation and a relatively low dilution rate (0.026 h−1). The culture was a highly enriched population of Deltaproteobacteria most closely related to Geobacter lovleyi, based on 16S rRNA gene sequencing (97% similarity). We established a stable and reproducible cultivation method for the enrichment of DNRA bacteria in a continuously operated reactor system. This enrichment method allows to further investigate the DNRA process and address the factors for competition between DNRA and denitrification, or other N-conversion pathways.  相似文献   
63.
64.
Modulation of host immunity by beneficial microbes   总被引:6,自引:0,他引:6  
In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and Rhizobium bacteria that fix atmospheric nitrogen for the plant. Several other types of beneficial soilborne microbes, such as plant-growth-promoting rhizobacteria and fungi with biological control activity, can stimulate plant growth by directly suppressing deleterious soilborne pathogens or by priming aboveground plant parts for enhanced defense against foliar pathogens or insect herbivores. The establishment of beneficial associations requires mutual recognition and substantial coordination of plant and microbial responses. A growing body of evidence suggests that beneficial microbes are initially recognized as potential invaders, after which an immune response is triggered, whereas, at later stages of the interaction, mutualists are able to short-circuit plant defense responses to enable successful colonization of host roots. Here, we review our current understanding of how symbiotic and nonsymbiotic beneficial soil microbes modulate the plant immune system and discuss the role of local and systemic defense responses in establishing the delicate balance between the two partners.  相似文献   
65.
Streptococcus pneumonia is the common cause of sepsis and meningitis. Emergence of multiple antibiotic resistant strains in the community‐acquired bacterium is catastrophic. Glucose kinase (GLK) is a regulatory enzyme capable of adding phosphate group to glucose in the first step of streptomycin biosynthesis. The activity of glucose kinase was regulated by the Carbon Catabolite Repression (CCR) system. Therefore, it is important to establish the structure‐function relation of GLK in S. pneumoniae. However, a solved structure for S. pneumoniae GLK is not available at the protein data bank (PDB). Therefore, we created a model of GLK from S. pnemoniae using the X‐ray structure of Glk from E. faecalis as template with MODELLER (a comparative modeling program). The model was validated using protein structure checking tools such as PROCHECK, WHAT IF and ProSA for reliability. The active site amino acid Asp114 in the template is retained in S. pneumoniae GLK model (Asp115). Solvent accessible surface area (ASA) analysis of the GLK model showed that known key residues playing important role in active site for ligand binding and metal ion binding are buried and hence not accessible to solvent. The information thus discussed provides insight to the molecular understanding of glucose kinase in S. pneumoniae.  相似文献   
66.

Background

One of the main limitations of many livestock breeding programs is that selection is in pure breeds housed in high-health environments but the aim is to improve crossbred performance under field conditions. Genomic selection (GS) using high-density genotyping could be used to address this. However in crossbred populations, 1) effects of SNPs may be breed specific, and 2) linkage disequilibrium may not be restricted to markers that are tightly linked to the QTL. In this study we apply GS to select for commercial crossbred performance and compare a model with breed-specific effects of SNP alleles (BSAM) to a model where SNP effects are assumed the same across breeds (ASGM). The impact of breed relatedness (generations since separation), size of the population used for training, and marker density were evaluated. Trait phenotype was controlled by 30 QTL and had a heritability of 0.30 for crossbred individuals. A Bayesian method (Bayes-B) was used to estimate the SNP effects in the crossbred training population and the accuracy of resulting GS breeding values for commercial crossbred performance was validated in the purebred population.

Results

Results demonstrate that crossbred data can be used to evaluate purebreds for commercial crossbred performance. Accuracies based on crossbred data were generally not much lower than accuracies based on pure breed data and almost identical when the breeds crossed were closely related breeds. The accuracy of both models (ASGM and BSAM) increased with marker density and size of the training data. Accuracies of both models also tended to decrease with increasing distance between breeds. However the effect of marker density, training data size and distance between breeds differed between the two models. BSAM only performed better than AGSM when the number of markers was small (500), the number of records used for training was large (4000), and when breeds were distantly related or unrelated.

Conclusion

In conclusion, GS can be conducted in crossbred population and models that fit breed-specific effects of SNP alleles may not be necessary, especially with high marker density. This opens great opportunities for genetic improvement of purebreds for performance of their crossbred descendents in the field, without the need to track pedigrees through the system.  相似文献   
67.
Quantitative trait loci (QTL) affecting carcass and meat quality located on SSC2 were identified using variance component methods. A large number of traits involved in meat and carcass quality was detected in a commercial crossbred population: 1855 pigs sired by 17 boars from a synthetic line, which where homozygous (A/A) for IGF2. Using combined linkage and linkage disequilibrium mapping (LDLA), several QTL significantly affecting loin muscle mass, ham weight and ham muscles (outer ham and knuckle ham) and meat quality traits, such as Minolta-L* and -b*, ultimate pH and Japanese colour score were detected. These results agreed well with previous QTL-studies involving SSC2. Since our study is carried out on crossbreds, different QTL may be segregating in the parental lines. To address this question, we compared models with a single QTL-variance component with models allowing for separate sire and dam QTL-variance components. The same QTL were identified using a single QTL variance component model compared to a model allowing for separate variances with minor differences with respect to QTL location. However, the variance component method made it possible to detect QTL segregating in the paternal line (e.g. HAMB), the maternal lines (e.g. Ham) or in both (e.g. pHu). Combining association and linkage information among haplotypes improved slightly the significance of the QTL compared to an analysis using linkage information only.  相似文献   
68.
Plant Immunity: It’s the Hormones Talking,But What Do They Say?   总被引:2,自引:0,他引:2  
  相似文献   
69.

Background  

Coffee is an important crop and is crucial to the economy of many developing countries, generating around US70 billion per year. There are 115 species in the < i > Coffea < /i > genus, but only two, < i > C. arabica < /i > and < i > C. canephora < /i > , are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer ( < i > Hypotheneumus hampei < /i > ), is responsible for worldwide annual losses of around US70 billion per year. There are 115 species in the Coffea genus, but only two, C. arabica and C. canephora, are commercially cultivated. Coffee plants are attacked by many pathogens and insect-pests, which affect not only the production of coffee but also its grain quality, reducing the commercial value of the product. The main insect-pest, the coffee berry borer (Hypotheneumus hampei), is responsible for worldwide annual losses of around US500 million. The coffee berry borer exclusively damages the coffee berries, and it is mainly controlled by organochlorine insecticides that are both toxic and carcinogenic. Unfortunately, natural resistance in the genus Coffea to H. hampei has not been documented. To overcome these problems, biotechnological strategies can be used to introduce an α-amylase inhibitor gene (α-AI1), which confers resistance against the coffee berry borer insect-pest, into C. arabica plants.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号