首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   22篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   14篇
  2014年   13篇
  2013年   20篇
  2012年   10篇
  2011年   15篇
  2010年   15篇
  2009年   13篇
  2008年   25篇
  2007年   11篇
  2006年   8篇
  2005年   8篇
  2004年   10篇
  2003年   3篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   7篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   1篇
  1985年   3篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1974年   1篇
  1965年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
131.

Background

Insect bite hypersensitivity is a common allergic disease in horse populations worldwide. Insect bite hypersensitivity is affected by both environmental and genetic factors. However, little is known about genes contributing to the genetic variance associated with insect bite hypersensitivity. Therefore, the aim of our study was to identify and quantify genomic associations with insect bite hypersensitivity in Shetland pony mares and Icelandic horses in the Netherlands.

Methods

Data on 200 Shetland pony mares and 146 Icelandic horses were collected according to a matched case–control design. Cases and controls were matched on various factors (e.g. region, sire) to minimize effects of population stratification. Breed-specific genome-wide association studies were performed using 70 k single nucleotide polymorphisms genotypes. Bayesian variable selection method Bayes-C with a threshold model implemented in GenSel software was applied. A 1 Mb non-overlapping window approach that accumulated contributions of adjacent single nucleotide polymorphisms was used to identify associated genomic regions.

Results

The percentage of variance explained by all single nucleotide polymorphisms was 13% in Shetland pony mares and 28% in Icelandic horses. The 20 non-overlapping windows explaining the largest percentages of genetic variance were found on nine chromosomes in Shetland pony mares and on 14 chromosomes in Icelandic horses. Overlap in identified associated genomic regions between breeds would suggest interesting candidate regions to follow-up on. Such regions common to both breeds (within 15 Mb) were found on chromosomes 3, 7, 11, 20 and 23. Positional candidate genes within 2 Mb from the associated windows were identified on chromosome 20 in both breeds. Candidate genes are within the equine lymphocyte antigen class II region, which evokes an immune response by recognizing many foreign molecules.

Conclusions

The genome-wide association study identified several genomic regions associated with insect bite hypersensitivity in Shetland pony mares and Icelandic horses. On chromosome 20, associated genomic regions in both breeds were within 2 Mb from the equine lymphocyte antigen class II region. Increased knowledge on insect bite hypersensitivity associated genes will contribute to our understanding of its biology, enabling more efficient selection, therapy and prevention to decrease insect bite hypersensitivity prevalence.  相似文献   
132.

Introduction

Sclerostin levels have been reported to be low in ankylosing spondylitis (AS), but there is no data regarding the possible role of this Wnt inhibitor during anti-tumor necrosis factor (TNF) therapy. The present study longitudinally evaluated sclerostin levels, inflammatory markers and bone mineral density (BMD) in AS patients under anti-TNF therapy.

Methods

Thirty active AS patients were assessed at baseline, 6 and 12 months after anti-TNF therapy regarding clinical parameters, inflammatory markers, BMD and baseline radiographic damage (mSASSS). Thirty age- and sex-matched healthy individuals comprised the control group. Patients'' sclerostin levels, sclerostin binding low-density lipoprotein receptor-related protein 6 (LRP6) and BMD were evaluated at the same time points and compared to controls.

Results

At baseline, AS patients had lower sclerostin levels (60.5 ± 32.7 vs. 96.7 ± 52.9 pmol/L, P = 0.002) and comparable sclerostin binding to LRP6 (P = 0.387) than controls. Improvement of Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Metrology Index (BASMI), Ankylosing Spondylitis quality of life (ASQoL) was observed at baseline vs. 6 vs. 12 months (P < 0.01). Concomitantly, a gradual increase in spine BMD (P < 0.001) and a positive correlation between baseline mSASSS and spine BMD was found (r = 0.468, P < 0.01). Inflammatory parameters reduction was observed comparing baseline vs. 6 vs. 12 months (P <0.01). Sclerostin levels progressively increased [baseline (60.5 ± 32.7) vs. 6 months (67.1 ± 31.9) vs. 12 months (72.7 ± 32.3) pmol/L, P <0.001]. At 12 months, the sclerostin levels remained significantly lower in patients compared to controls (72.7 ± 32.3 vs. 96.70 ± 52.85 pmol/L, P = 0.038). Moreover, sclerostin serum levels at 12 months were lower in the 10 patients with high C reactive protein (CRP) (≥ 5 mg/l) compared to the other 20 patients with normal CRP (P = 0.004). Of note, these 10 patients with persistent inflammation also had lower sclerostin serum levels at baseline compared to the other patients (P = 0.023). Univariate logistic regression analysis demonstrated that AS patients with lower sclerostin serum levels had an increased risk to have high CRP at 12 months (odds ratio = 7.43, 95% CI 1.23 to 45.01, P = 0.020) than those with higher sclerostin values.

Conclusions

Persistent low sclerostin levels may underlie continuous inflammation in AS patients under anti-TNF therapy.  相似文献   
133.
The rhizosphere microbiome and plant health   总被引:38,自引:0,他引:38  
The diversity of microbes associated with plant roots is enormous, in the order of tens of thousands of species. This complex plant-associated microbial community, also referred to as the second genome of the plant, is crucial for plant health. Recent advances in plant-microbe interactions research revealed that plants are able to shape their rhizosphere microbiome, as evidenced by the fact that different plant species host specific microbial communities when grown on the same soil. In this review, we discuss evidence that upon pathogen or insect attack, plants are able to recruit protective microorganisms, and enhance microbial activity to suppress pathogens in the rhizosphere. A comprehensive understanding of the mechanisms that govern selection and activity of microbial communities by plant roots will provide new opportunities to increase crop production.  相似文献   
134.
135.
We report a case of axillary lymphadenopathy thirty years after a decorative tattoo clinically mimicking metastatic melanoma. The importance of relying on histological confirmation of metastatic disease before altering extent of surgery is discussed. The importance of recording presence of decorative tattoos is stressed.  相似文献   
136.
Plant immune responses triggered by beneficial microbes   总被引:3,自引:0,他引:3  
Beneficial soil-borne microorganisms, such as plant growth promoting rhizobacteria and mycorrhizal fungi, can improve plant performance by inducing systemic defense responses that confer broad-spectrum resistance to plant pathogens and even insect herbivores. Different beneficial microbe-associated molecular patterns (MAMPs) are recognized by the plant, which results in a mild, but effective activation of the plant immune responses in systemic tissues. Evidence is accumulating that systemic resistance induced by different beneficials is regulated by similar jasmonate-dependent and ethylene-dependent signaling pathways and is associated with priming for enhanced defense.  相似文献   
137.
138.
139.
Abstract: To protect themselves from disease, plants have evolved sophisticated defence mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signalling pathways controlling disease resistance is a major objective in research on plant-pathogen interactions. The capacity of a plant to develop a broad spectrum, systemic acquired resistance (SAR) after primary infection with a necrotizing pathogen is well-known and its signal transduction pathway extensively studied. Plants of which the roots have been colonized by specific strains of non-pathogenic fluorescent Pseudomonas spp. develop a phenotypically similar form of protection that is called rhizobacteria-mediated induced systemic resistance (ISR). In contrast to pathogen-induced SAR, which is regulated by salicylic acid, rhizobacteria-mediated ISR is controlled by a signalling pathway in which jasmonic acid and ethylene play key roles. In the past eight years, the model plant species Arabidopsis thaliana was explored to study the molecular basis of rhizobacteria-mediated ISR. Here we review current knowledge of the signal transduction steps involved in the ISR pathway that leads from recognition of the rhizobacteria in the roots to systemic expression of broad-spectrum disease resistance in aboveground foliar tissues.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号