首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   9篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   4篇
  2012年   6篇
  2011年   8篇
  2010年   7篇
  2009年   4篇
  2008年   8篇
  2007年   3篇
  2006年   4篇
  2005年   10篇
  2004年   6篇
  2003年   12篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1978年   2篇
  1976年   1篇
  1972年   1篇
  1966年   1篇
排序方式: 共有120条查询结果,搜索用时 31 毫秒
21.
In goats, several field studies have identified coding mutations of the gene encoding the prion protein (I/M142, N/D146, S/D146, R/Q211, and Q/K222) that are associated with a lower risk of developing classical scrapie. However, the data related to the levels of resistance to transmissible spongiform encephalopathies (TSEs) of these different PRNP gene mutations are still considered insufficient for developing large-scale genetic selection against scrapie in this species. In this study, we inoculated wild-type (WT) PRNP (I142R154R211Q222) goats and homozygous and/or heterozygous I/M142, R/H154, R/Q211, and Q/K222 goats with a goat natural scrapie isolate by either the oral or the intracerebral (i.c.) route. Our results indicate that the I/M142 PRNP polymorphism does not provide substantial resistance to scrapie infection following intracerebral or oral inoculation. They also demonstrate that H154, Q211, and K222 PRNP allele carriers are all resistant to scrapie infection following oral exposure. However, in comparison to WT animals, the H154 and Q211 allele carriers displayed only moderate increases in the incubation period following i.c. challenge. After i.c. challenge, heterozygous K222 and a small proportion of homozygous K222 goats also developed the disease, but with incubation periods that were 4 to 5 times longer than those in WT animals. These results support the contention that the K222 goat prion protein variant provides a strong but not absolutely protective effect against classical scrapie.  相似文献   
22.
23.
24.
BAHD acyltransferases catalyze the acylation of many plant secondary metabolites. We characterized the function of At2g19070 , a member of the BAHD gene family of Arabidopsis thaliana . The acyltransferase gene was shown to be specifically expressed in anther tapetum cells in the early stages of flower development. The impact of gene repression was studied in RNAi plants and in a knockout (KO) mutant line. Immunoblotting with a specific antiserum raised against the recombinant protein was used to evaluate the accumulation of At2g19070 gene product in flowers of various Arabidopsis genotypes including the KO and RNAi lines, the male sterile mutant ms1 and transformants overexpressing the acyltransferase gene. Metabolic profiling of flower bud tissues from these genetic backgrounds demonstrated a positive correlation between the accumulation of acyltransferase protein and the quantities of metabolites that were putatively identified by tandem mass spectrometry as N 1, N 5, N 10-trihydroxyferuloyl spermidine and N 1, N 5-dihydroxyferuloyl- N 10-sinapoyl spermidine. These products, deposited in pollen coat, can be readily extracted by pollen wash and were shown to be responsible for pollen autofluorescence. The activity of the recombinant enzyme produced in bacteria was assayed with various hydroxycinnamoyl-CoA esters and polyamines as donor and acceptor substrates, respectively. Feruloyl-CoA and spermidine proved the best substrates, and the enzyme has therefore been named spermidine hydroxycinnamoyl transferase (SHT). A methyltransferase gene ( At1g67990 ) which co-regulated with SHT during flower development, was shown to be involved in the O -methylation of spermidine conjugates by analyzing the consequences of its repression in RNAi plants and by characterizing the methylation activity of the recombinant enzyme.  相似文献   
25.
Stress within the endoplasmic reticulum (ER) induces a coordinated response, namely the unfolded protein response (UPR), devoted to helping the ER cope with the accumulation of misfolded proteins. Failure of the UPR plays an important role in several human diseases. Recent studies report that intracellular accumulation of saturated fatty acids (SFAs) and cholesterol, seen in diseases of high incidence, such as obesity or atherosclerosis, results in ER stress. In the present study, we evaluated the effects of perturbations to lipid homeostasis on ER stress/UPR induction in the model eukaryote Saccharomyces cerevisiae . We show that SFA originating from either endogenous (preclusion of fatty acid desaturation) or exogenous (feeding with extracellular SFA) sources trigger ER stress and that ergosterol, the major sterol in yeast, acts synergistically with SFA in this process. This latter effect is connected to ergosterol accumulation within microsomal fractions from SFA-accumulating cells, which display highly saturated phospholipid content. Moreover, treating the cells with the molecular chaperone 4-phenyl butyrate abolishes UPR induction, suggesting that lipid-induced ER stress leads to an overload of misfolded protein that acts, in turn, as the molecular signal for induction of the UPR. The present data are discussed in the context of human diseases that involve lipid deregulation.  相似文献   
26.
27.
The folding of beta-structured, fibrous proteins is a largely unexplored area. A class of such proteins is used by viruses as adhesins, and recent studies revealed novel beta-structured motifs for them. We have been studying the folding and assembly of adenovirus fibers that consist of a globular C-terminal domain, a central fibrous shaft, and an N-terminal part that attaches to the viral capsid. The globular C-terminal, or "head" domain, has been postulated to be necessary for the trimerization of the fiber and might act as a registration signal that directs its correct folding and assembly. In this work, we replaced the head of the fiber by the trimerization domain of the bacteriophage T4 fibritin, termed "foldon." Two chimeric proteins, comprising the foldon domain connected at the C-terminal end of four fiber shaft repeats with or without the use of a natural linker sequence, fold into highly stable, SDS-resistant trimers. The structural signatures of the chimeric proteins as seen by CD and infrared spectroscopy are reported. The results suggest that the foldon domain can successfully replace the fiber head domain in ensuring correct trimerization of the shaft sequences. Biological implications and implications for engineering highly stable, beta-structured nanorods are discussed.  相似文献   
28.
29.
According to Burkitt's hypothesis, dietary fibres may protect against the development of colorectal cancer. In rats, studies have shown that only butyrate-producing fibres are protective. In parallel, in humans, non-steroidal anti-inflammatory drugs, which target cyclooxygenases, have been shown to display a protective effect against colorectal cancer. Among them, COX-2-selective inhibitors which present less side effects than non-selective agents, are promising as chemopreventive agents. Our aim was to analyse the effect of an association between butyrate-producing fibres and the COX-2 inhibitor on the development of aberrant crypt foci (ACF) in rats. Fisher F344 rats were fed with (1) a standard low fibre control diet; (2) the standard diet supplemented with 1500 ppm celecoxib; (3) a diet supplemented with 6% fructo-oligosaccharide (FOS); and (4) a diet with both celecoxib and FOS. Three weeks later, the rats were injected twice with azoxymethane and the number of ACF was determined 15 weeks later. In the control group, 43.8 +/- 6.4 ACF were found. This number was not significantly modified by the addition of FOS or celecoxib alone to the diet. However, the association of FOS and celecoxib resulted in a 61% reduction in the number of ACF (P < 0.01). The number of aberrant crypt per foci was also reduced. Thus, although no significant effect of celecoxib or FOS alone was identified, the association of butyrate-producing fibre and celecoxib was effective in preventing the development of ACF. This preliminary study argues for a strong protective effect of such an association which deserves further studies.  相似文献   
30.
A protein hydrolyzing hydroxycinnamoyl-CoA esters has been purified from tobacco stem extracts by a series of high pressure liquid chromatography steps. The determination of its N-terminal amino acid sequence allowed design of primers permitting the corresponding cDNA to be cloned by PCR. Sequence analysis revealed that the tobacco gene belongs to a plant acyltransferase gene family, the members of which have various functions. The tobacco cDNA was expressed in bacterial cells as a recombinant protein fused to glutathione S-transferase. The fusion protein was affinity-purified and cleaved to yield the recombinant enzyme for use in the study of catalytic properties. The enzyme catalyzed the synthesis of shikimate and quinate esters shown recently to be substrates of the cytochrome P450 3-hydroxylase involved in phenylpropanoid biosynthesis. The enzyme has been named hydroxycinnamoyl-CoA: shikimate/quinate hydroxycinnamoyltransferase. We show that p-coumaroyl-CoA and caffeoyl-CoA are the best acyl group donors and that the acyl group is transferred more efficiently to shikimate than to quinate. The enzyme also catalyzed the reverse reaction, i.e. the formation of caffeoyl-CoA from chlorogenate (5-O-caffeoyl quinate ester). Thus, hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase appears to control the biosynthesis and turnover of major plant phenolic compounds such as lignin and chlorogenic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号