首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   10篇
  294篇
  2024年   1篇
  2023年   3篇
  2022年   4篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   1篇
  2016年   4篇
  2015年   13篇
  2014年   16篇
  2013年   23篇
  2012年   26篇
  2011年   22篇
  2010年   19篇
  2009年   13篇
  2008年   27篇
  2007年   24篇
  2006年   14篇
  2005年   7篇
  2004年   14篇
  2003年   22篇
  2002年   14篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1996年   2篇
  1991年   1篇
  1982年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
31.

Purpose

Life cycle assessment (LCA) methodology is a well-established analytical method to quantify environmental impacts, which has been mainly applied to products. However, recent literature would suggest that it has also the potential as an analysis and design tool for processes, and stresses that one of the biggest challenges of this decade in the field of process systems engineering (PSE) is the development of tools for environmental considerations.

Method

This article attempts to give an overview of the integration of LCA methodology in the context of industrial ecology, and focuses on the use of this methodology for environmental considerations concerning process design and optimization.

Results

The review identifies that LCA is often used as a multi-objective optimization of processes: practitioners use LCA to obtain the inventory and inject the results into the optimization model. It also shows that most of the LCA studies undertaken on process analysis consider the unit processes as black boxes and build the inventory analysis on fixed operating conditions.

Conclusions

The article highlights the interest to better assimilate PSE tools with LCA methodology, in order to produce a more detailed analysis. This will allow optimizing the influence of process operating conditions on environmental impacts and including detailed environmental results into process industry.  相似文献   
32.
33.
34.
35.

Background

Despite increasingly frequent bacterial resistance to antibiotics, antibacterial innovation is rare. Ketolides constitute one of the very few new antibiotic classes active against Streptococcus pneumoniae developed during the last 25 years. Their mechanism of action resembles that of macrolides, but they are unaffected by common resistance mechanisms. However, cross-resistance to ketolides has been observed in some macrolide-resistant strains. We examined how new antibiotic exposure may affect overall pneumococcal resistance patterns in the population. The aims of this study were to assess the potential dissemination of newly emerged resistances and to control the selection of strains already multiresistant to existing antimicrobials.

Methodology/Principal Findings

We developed an age-structured population model for S. pneumoniae transmission in a human community exposed to heptavalent vaccine, and β-lactams, macrolides and ketolides. The dynamics of intra-individual selection of resistant strains under antibiotic exposure and interindividual transmission were simulated, with antibiotic-specific resistance mechanisms defining the path to co-resistances and cross-resistances, and parameters concerning the French situation. Results of this simulation study suggest that new antibiotic consumption could markedly slow the diffusion of multiresistant strains. Wider use was associated with slower progression of multiresistance. When ketolides were prescribed to all ages, resistance to them reached 10% after >15 years, while it took >40 years when they were prescribed only to adults. In the scenario according to which new antibiotics totally replaced former antimicrobials, the β-lactam resistance rate was limited at 70%.

Conclusions

In a context of widespread vaccination and rational use of antibiotics, innovative antibiotic, prescribed to all age groups, may have an added impact on multiresistant-strain dissemination in the population.  相似文献   
36.

Background

Although strategies to contain influenza pandemics are well studied, the characterization and the implications of different geographical and temporal diffusion patterns of the pandemic have been given less attention.

Methodology/Main Findings

Using a well-documented metapopulation model incorporating air travel between 52 major world cities, we identified potential influenza pandemic diffusion profiles and examined how the impact of interventions might be affected by this heterogeneity. Clustering methods applied to a set of pandemic simulations, characterized by seven parameters related to the conditions of emergence that were varied following Latin hypercube sampling, were used to identify six pandemic profiles exhibiting different characteristics notably in terms of global burden (from 415 to >160 million of cases) and duration (from 26 to 360 days). A multivariate sensitivity analysis showed that the transmission rate and proportion of susceptibles have a strong impact on the pandemic diffusion. The correlation between interventions and pandemic outcomes were analyzed for two specific profiles: a fast, massive pandemic and a slow building, long-lasting one. In both cases, the date of introduction for five control measures (masks, isolation, prophylactic or therapeutic use of antivirals, vaccination) correlated strongly with pandemic outcomes. Conversely, the coverage and efficacy of these interventions only moderately correlated with pandemic outcomes in the case of a massive pandemic. Pre-pandemic vaccination influenced pandemic outcomes in both profiles, while travel restriction was the only measure without any measurable effect in either.

Conclusions

Our study highlights: (i) the great heterogeneity in possible profiles of a future influenza pandemic; (ii) the value of being well prepared in every country since a pandemic may have heavy consequences wherever and whenever it starts; (iii) the need to quickly implement control measures and even to anticipate pandemic emergence through pre-pandemic vaccination; and (iv) the value of combining all available control measures except perhaps travel restrictions.  相似文献   
37.
38.
39.

Introduction

The objective of this study was to evaluate the long-term safety and efficacy of tabalumab, a monoclonal antibody that neutralizes membrane-bound and soluble B-cell-activating factor, in rheumatoid arthritis (RA) patients.

Methods

Patients with RA who completed one of two 24-week randomized controlled trials (RCTs) participated in this 52-week, flexible-dose, open-label extension study. Patients in RCT1 received intravenous placebo, 30-mg tabalumab or 80-mg tabalumab every 3 weeks, and patients in RCT2 received subcutaneous placebo or 1-, 3-, 10-, 30-, 60- or 120-mg tabalumab every 4 weeks (Q4W). Regardless of prior treatment, all patients in this study received subcutaneous 60-mg tabalumab Q4W for the first 3 months, then a one-time increase to 120-mg tabalumab Q4W (60-mg/120-mg group) and a one-time decrease to 60-mg tabalumab Q4W per patient was allowed (60-mg/120-mg/60-mg group).

Results

There were 182 patients enrolled: 60 mg (n = 60), 60/120 mg (n = 121) and 60/120/60 mg (n = 1). Pretabalumab baseline disease activity was generally higher in the 60-mg/120-mg group. There was a higher frequency of serious adverse events and treatment-emergent adverse events, as well as infections and injection-site reactions, in the 60-mg/120-mg group. One death unrelated to the study drug occurred (60-mg/120-mg group). In both groups, total B-cell counts decreased by approximately 40% from the baseline level in the RCT originating study. Both groups demonstrated efficacy through 52 weeks of treatment relative to baseline pretabalumab disease activity based on American College of Rheumatology criteria improvement ≥20%, ≥50% and ≥70%; European League against Rheumatism Responder Index in 28 joints; Disease Activity Score in 28 joints–C-reactive protein; and Health Assessment Questionnaire–Disability Index.

Conclusions

With long-term, open-label tabalumab treatment, no unexpected safety signals were observed, and B-cell reductions were consistent with previous findings. Despite differences in RCT originating studies, both groups demonstrated an efficacy response through the 52-week extension.

Trial registration

ClinicalTrials.gov Identifier: NCT00837811 (registered 3 February 2009).

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-014-0415-2) contains supplementary material, which is available to authorized users.  相似文献   
40.
The C-type lectin DC-SIGN expressed on immature dendritic cells (DCs) captures human immunodeficiency virus (HIV) particles and enhances the infection of CD4+ T cells. This process, known as trans-enhancement of T-cell infection, has been related to HIV endocytosis. It has been proposed that DC-SIGN targets HIV to a nondegradative compartment within DCs and DC-SIGN-expressing cells, allowing incoming virus to persist for several days before infecting target cells. In this study, we provide several lines of evidence suggesting that intracellular storage of intact virions does not contribute to HIV transmission. We show that endocytosis-defective DC-SIGN molecules enhance T-cell infection as efficiently as their wild-type counterparts, indicating that DC-SIGN-mediated HIV internalization is dispensable for trans-enhancement. Furthermore, using immature DCs that are genetically resistant to infection, we demonstrate that several days after viral uptake, HIV transfer from DCs to T cells requires viral fusion and occurs exclusively through DC infection and transmission of newly synthesized viral particles. Importantly, our results suggest that DC-SIGN participates in this process by cooperating with the HIV entry receptors to facilitate cis-infection of immature DCs and subsequent viral transfer to T cells. We suggest that such a mechanism, rather than intracellular storage of incoming virus, accounts for the long-term transfer of HIV to CD4+ T cells and may contribute to the spread of infection by DCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号