首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   657篇
  免费   47篇
  2023年   3篇
  2022年   4篇
  2021年   19篇
  2020年   5篇
  2019年   13篇
  2018年   10篇
  2017年   7篇
  2016年   16篇
  2015年   24篇
  2014年   23篇
  2013年   26篇
  2012年   38篇
  2011年   39篇
  2010年   30篇
  2009年   18篇
  2008年   31篇
  2007年   28篇
  2006年   24篇
  2005年   40篇
  2004年   29篇
  2003年   26篇
  2002年   21篇
  2001年   14篇
  2000年   11篇
  1999年   18篇
  1998年   5篇
  1997年   13篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   10篇
  1991年   8篇
  1990年   9篇
  1989年   14篇
  1988年   13篇
  1987年   11篇
  1986年   6篇
  1985年   16篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   8篇
  1978年   5篇
  1974年   6篇
  1973年   5篇
  1972年   3篇
  1970年   4篇
  1949年   2篇
排序方式: 共有704条查询结果,搜索用时 389 毫秒
71.
72.
Numerous studies have shown that the hippocampus is critical for spatial memory. Within nonhuman research, a task often used to assess spatial memory is the radial arm maze. Because of the spatial nature of this task, this maze is often used to assess the function of the hippocampus. Our goal was to extrapolate this task to humans and examine whether healthy undergraduates utilize their hippocampus while performing a virtual reality version of the radial arm maze task. Thirteen undergraduates performed a virtual radial arm maze during functional magnetic resonance imaging. The brain maps of activity reveal bilateral hippocampal BOLD signal changes during the performance of this task. However, paradoxically, this BOLD signal change decreases during the spatial memory component of the task. Additionally, we note frontal cortex activity reflective of working memory circuits. These data reveal that, as predicted by the rodent literature, the hippocampus is involved in performing the virtual radial arm maze in humans. Hence, this virtual reality version may be used to assess the integrity of hippocampus so as to predict risk or severity in a variety of psychiatric disorders.  相似文献   
73.
The aldo-keto reductase (AKR) human type 3 3alpha-hydroxysteroid dehydrogenase (h3alpha-HSD3, AKR1C2) plays a crucial role in the regulation of the intracellular concentrations of testosterone and 5alpha-dihydrotestosterone (5alpha-DHT), two steroids directly linked to the etiology and the progression of many prostate diseases and cancer. This enzyme also binds many structurally different molecules such as 4-hydroxynonenal, polycyclic aromatic hydrocarbons, and indanone. To understand the mechanism underlying the plasticity of its substrate-binding site, we solved the binary complex structure of h3alpha-HSD3-NADP(H) at 1.9 A resolution. During the refinement process, we found acetate and citrate molecules deeply engulfed in the steroid-binding cavity. Superimposition of this structure with the h3alpha-HSD3-NADP(H)-testosterone/acetate ternary complex structure reveals that one of the mobile loops forming the binding cavity operates a slight contraction movement against the citrate molecule while the side chains of many residues undergo numerous conformational changes, probably to create an optimal binding site for the citrate. These structural changes, which altogether cause a reduction of the substrate-binding cavity volume (from 776 A(3) in the presence of testosterone/acetate to 704 A(3) in the acetate/citrate complex), are reminiscent of the "induced-fit" mechanism previously proposed for the aldose reductase, another member of the AKR superfamily. We also found that the replacement of residues Arg(301) and Arg(304), localized near the steroid-binding cavity, significantly affects the 3alpha-HSD activity of this enzyme toward 5alpha-DHT and completely abolishes its 17beta-HSD activity on 4-dione. All these results have thus been used to reevaluate the binding mode of this enzyme for androgens.  相似文献   
74.
Summary The evolutionary origin of vertebrate hindbrain segmentation is unclear since the amphioxus, the closest living invertebrate relative to the vertebrates, possesses a hindbrain homolog that displays no gross morphological segmentation. Three of the estrogen-receptor related (ERR) receptors are segmentally expressed in the zebrafish hindbrain, suggesting that their common ancestor was expressed in a similar, reiterated manner. We have also cloned and determined the developmental expression of the single homolog of the vertebrate ERR genes in the amphioxus (AmphiERR). This gene is also expressed in a segmented manner in a region considered homologous to the vertebrate hindbrain. In contrast to the expression of amphioxus islet (a LIM-homeobox gene that also labels motoneurons), AmphiERR expression persists longer in the hindbrain homolog and does not later extend to additional posterior cells. In addition, AmphiERR and one of its vertebrate homologs (ERRalpha) are expressed in the developing somitic musculature of amphioxus and zebrafish, respectively. Altogether, our results are consistent with fine structural evidence suggesting that the amphioxus hindbrain is segmented, and indicate that chordate ERR gene expression is a marker for both hindbrain and muscle segmentation. Furthermore, our data support an evolution model of chordate brain segmentation: originally, the program for anterior segmentation in the protochordate ancestors of the vertebrates resided in the developing axial mesoderm which imposed reiterated patterning on the adjacent neural tube; during early vertebrate evolution, this segmentation program was transferred to and controlled by the neural tube.  相似文献   
75.
Lipoarabinomannan (LAM) lipoglycans have been characterized from a range of mycolic acid-containing actinomycetes and from the amycolate actinomycete Amycolatopsis sulphurea. To further understand the structural diversity of this family, we have characterized the lipoglycan of the otic commensal Turicella otitidis. T. otitidis LAM (TotLAM) has been determined to consist of a mannosyl phosphatidylinositol anchor unit carrying an (α 1→6)-linked mannan core and substituted with terminal-arabinosyl branches. Thus, TotLAM has a novel truncated LAM structure. Using the human monocytic THP-1 cell line, it was found that TotLAM exhibited only minimal ability to induce tumor necrosis factor alpha. These findings contribute further to our understanding of actinomycete LAM diversity and allow further speculation as to the correlation between LAM structure and the immunomodulatory activities of these lipoglycans.  相似文献   
76.
The genus Tsukamurella is a member of the phylogenetic group nocardioform actinomycetes and is closely related to the genus Mycobacterium. The mycobacterial cell envelope contains lipoglycans, and of particular interest is lipoarabinomannan, one of the most potent mycobacterial immunomodulatory molecules. We have investigated the presence of lipoglycans in Tsukamurella paurometabola and report here the isolation and structural characterization of a new lipoarabinomannan variant, designated TpaLAM. Matrix-assisted laser desorption ionization-mass spectrometric analysis revealed that TpaLAM had an average molecular mass of 12.5 kDa and consequently was slightly smaller than Mycobacterium tuberculosis lipoarabinomannan. Using a range of chemical degradations, NMR experiments, capillary electrophoresis, and mass spectrometry analyses, TpaLAM revealed an original carbohydrate structure. Indeed, TpaLAM contained a mannosylphosphatidyl-myo-inositol (MPI) anchor glycosylated by a linear (alpha1-->6)-Manp mannan domain, which is further substituted by an (alpha1-->5)-Araf chain. Half of the Araf units are further substituted at the O-2 position by a Manp-(alpha1-->2)-Manp-(alpha1--> dimannoside motif. Altogether, TpaLAM appears to be the most elaborated non-mycobacterial LAM molecule identified to date. TpaLAM was found to induce the pro-inflammatory cytokine tumor necrosis factor (TNF)-alpha when tested with either human or murine monocyte/macrophage cell lines. This induction was completely abrogated in the presence of an anti-toll-like receptor-2 (TLR-2) antibody, suggesting that TLR-2 participates in the mediation of TNF-alpha production in response to TpaLAM. Moreover, we established that the lipomannan core of TpaLAM is the primary moiety responsible for the observed TNF-alpha-inducing activity. This conclusively demonstrates that a linear (alpha1-->6)-Manp chain, linked to the MPI anchor, is sufficient in providing pro-inflammatory activity.  相似文献   
77.
Rotavirus assembly is a multistep process that requires the successive association of four major structural proteins in three concentric layers. It has been assumed until now that VP4, the most external viral protein that forms the spikes of mature virions, associates with double-layer particles within the endoplasmic reticulum (ER) in conjunction with VP7 and with the help of a nonstructural protein, NSP4. VP7 and NSP4 are two glycosylated proteins. However, we recently described a strong association of VP4 with raft-type membrane microdomains, a result that makes the ER a highly questionable site for the final assembly of rotavirus, since rafts are thought to be absent from this compartment. In this study, we used tunicamycin (TM), a drug known to block the first step of protein N glycosylation, as a tool to dissect rotavirus assembly. We show that, as expected, TM blocks viral protein glycosylation and also decreases virus infectivity. In the meantime, viral particles were blocked as enveloped particles in the ER. Interestingly, TM does not prevent the targeting of VP4 to the cell surface nor its association with raft membranes, whereas the infectivity associated with the raft fractions strongly decreased. VP4 does not colocalize with the ER marker protein disulfide-isomerase even when viral particles were blocked by TM in this compartment. These results strongly support a primary role for raft membranes in rotavirus final assembly and the fact that VP4 assembly with the rest of the particle is an extrareticular event.  相似文献   
78.
Rotaviruses are a major cause of acute gastroenteritis in children worldwide. Early stages of rotavirus assembly in infected cells occur in viroplasms. Confocal microscopy demonstrated that viroplasms associate with lipids and proteins (perilipin A, ADRP) characteristic of lipid droplets (LDs). LD-associated proteins were also found to colocalize with viroplasms containing a rotaviral NSP5-enhanced green fluorescent protein (EGFP) fusion protein and with viroplasm-like structures in uninfected cells coexpressing viral NSP2 and NSP5. Close spatial proximity of NSP5-EGFP and cellular perilipin A was confirmed by fluorescence resonance energy transfer. Viroplasms appear to recruit LD components during the time course of rotavirus infection. NSP5-specific siRNA blocked association of perilipin A with NSP5 in viroplasms. Viral double-stranded RNA (dsRNA), NSP5, and perilipin A cosedimented in low-density gradient fractions of rotavirus-infected cell extracts. Chemical compounds interfering with LD formation (isoproterenol plus isobutylmethylxanthine; triacsin C) decreased the number of viroplasms and inhibited dsRNA replication and the production of infectious progeny virus; this effect correlated with significant protection of cells from virus-associated cytopathicity. Rotaviruses represent a genus of another virus family utilizing LD components for replication, pointing at novel therapeutic targets for these pathogens.Rotaviruses are a major cause of acute gastroenteritis in infants and young children, producing a high burden of disease worldwide and over 600,000 deaths per annum, mainly in developing countries (43). Recently, two live attenuated rotavirus vaccines (49, 58) have been licensed in various countries, and their widespread use in universal mass vaccination programs is being implemented (55).Rotaviruses form a genus of the Reoviridae family. They contain a genome of 11 segments of double-stranded RNA (dsRNA) encoding six structural proteins (VP1, VP2, VP3, VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). After entry into the host cell the outer layer of the triple-layered particles (TLPs; infectious virions) is removed in endocytic vesicles, and the resulting double-layered particles (DLPs) actively transcribe mRNAs from the 11 RNA segments and release them into the cytoplasm. The mRNAs are translated into proteins but also act as templates for dsRNA synthesis (RNA replication). The early stages of viral morphogenesis and viral RNA replication occur in cytoplasmic inclusion bodies termed “viroplasms.” Partially assembled DLPs are released from viroplasms and receive their outer layer in the rough endoplasmic reticulum (RER), forming TLPs (for details, see Estes and Kapikian [20]).The rotavirus nonstructural proteins NSP2 and NSP5 are major components of viroplasms (20, 47). These two proteins alone are sufficient to induce the formation of viroplasm-like structures (VLS) (21). Blocking of either NSP2 or NSP5 in rotavirus-infected cells significantly reduces viroplasm formation and the production of infectious viral progeny (11, 54, 57). Until now, host cell proteins involved in viroplasm formation have not been identified.Morphological similarities between viroplasms and lipid droplets (LDs) prompted us to investigate their relationship. Both structures have phosphoproteins (NSP5 and perilipin A, respectively) inserted on their surface in ringlike shapes (16, 34). LDs are intracellular organelles involved in lipid and carbohydrate metabolism. They consist of a neutral lipid core surrounded by a phospholipid monolayer containing LD-associated proteins; those include proteins of the PAT family consisting of perilipin, adipophilin (adipose differentiation-related protein [ADRP]), and TIP-47 (9, 37). Lipolysis from LDs is regulated by hormones such as catecholamines, which trigger the phosphorylation of hormone-sensitive lipase (HSL) and perilipin A and induce LD fragmentation. Incubating adipocytes with the β-adrenergic agonist isoproterenol and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) activates this pathway (27, 34). LD formation can also be blocked by triacsin C, a specific inhibitor of long chain acyl coenzyme A synthetases (30, 39).We demonstrate here that rotavirus viroplasms colocalize with the LD-associated proteins perilipin A and ADRP and also with the lipids of LDs. These interactions appear to be required for the formation of functional viroplasms and the production of infectious viral progeny, since compounds dispersing LDs or blocking LD formation significantly decrease the number and size of viroplasms and the amount of infectious progeny. Taken together, these findings strongly suggest a critical role of LDs in rotavirus replication.  相似文献   
79.
The amniotic membrane, the most internal placental membrane, has various properties useful in ophthalmology. Collected on delivery by elective Caesarean section, the amnion is prepared under sterile conditions, and, usually, cryopreserved until its use as a biological bandage or as a substrate for epithelial growth in the management of various ocular surface conditions. Specifically, the amnion is used to : (1) limit formation of adhesive bands between eyelids and eyeball (symblepharon) or the progression of a fibrovascular outgrowth towards the cornea (pterygium) or to (2) facilitate the healing of corneal ulcers, bullous keratopathy, and corneal stem cell deficiency. In this last condition, either hereditary or acquired after a thermal or a chemical burn, corneal stem cells, located at a transitional zone between the cornea and conjunctiva, are lost. These cells are essential for renewal of corneal epithelium in normal and in diseased states. The loss of these cells leaves the corneal surface free for invasion by conjunctival epithelium. Not only, does conjunctival epithelium support the development of vascularisation on the normally avascular cornea, but some conjunctival cells differentiate into mucus secreting goblet cells. Such a change in phenotype leads to loss of corneal transparency and visual disability. The removal of this fibro-vascular outgrowth in combination with transplantation of both amniotic membrane and corneal stem cells are used to treat this condition. The amnion stimulates the proliferation of less differentiated cells which have the potential to reconstruct the cornea. This potential is at the origin of the hypothesis that the amnion may provide an alternative niche for limbal stem cells of the corneal epithelium. It abounds in cytokines and has antalgic, anti-bacterial, anti-inflammatory and anti-immunogenic properties, in addition to allowing, like fetal skin does, wound healing with minimal scar formation. These desirable properties are responsible for the increasing use of amniotic membrane in ophthalmology. The complete understanding of the mechanisms of action of amniotic membrane for ocular surface diseases has yet to be understood. Once revealed by research, they may provide new pharmacological avenues to treat ocular surface diseases.  相似文献   
80.
The calcium-dependent proteolytic system is a large family of well-conserved ubiquitous and tissue-specific proteases, known as calpains, and an endogenous inhibitor, calpastatin. Ubiquitous calpains are involved in many physiological phenomena, such as the cell cycle, muscle cell differentiation, and cell migration. This study investigates the regulation of crucial steps of cell motility, myoblast adhesion and spreading, by calpains. Inhibition of each ubiquitous calpain isoform by antisense strategy pinpointed the involvement of each of these proteases in myoblast adhesion and spreading. Moreover, the actin cytoskeleton and microtubules were observed in transfected cells, demonstrating that each ubiquitous calpain could be involved in the actin fiber organization. C2C12 cells with reduced mu- or m-calpain levels have a rounded morphology and disorganized stress fibers, but no modification in the microtubule cytoskeleton. Antisense strategy directed against MARCKS, a calpain substrate during C2C12 migration, showed that this protein could play a role in stress fiber polymerization. A complementary proteomic analysis using C2C12 cells over-expressing calpastatin indicated that two proteins were under-expressed, while six, which are involved in the studied phenomena, were overexpressed after calpain inhibition. The possible role of these proteins in adhesion, spreading, and migration was discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号