首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656篇
  免费   47篇
  2023年   3篇
  2022年   3篇
  2021年   19篇
  2020年   5篇
  2019年   13篇
  2018年   10篇
  2017年   7篇
  2016年   16篇
  2015年   24篇
  2014年   23篇
  2013年   26篇
  2012年   38篇
  2011年   39篇
  2010年   30篇
  2009年   18篇
  2008年   31篇
  2007年   28篇
  2006年   24篇
  2005年   40篇
  2004年   29篇
  2003年   26篇
  2002年   21篇
  2001年   14篇
  2000年   11篇
  1999年   18篇
  1998年   5篇
  1997年   13篇
  1996年   6篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   10篇
  1991年   8篇
  1990年   9篇
  1989年   14篇
  1988年   13篇
  1987年   11篇
  1986年   6篇
  1985年   16篇
  1983年   3篇
  1982年   5篇
  1981年   6篇
  1980年   7篇
  1979年   8篇
  1978年   5篇
  1974年   6篇
  1973年   5篇
  1972年   3篇
  1970年   4篇
  1949年   2篇
排序方式: 共有703条查询结果,搜索用时 15 毫秒
41.
42.
Plant Molecular Biology - Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant...  相似文献   
43.
44.
Poly(ADP-ribose) glycohydrolase (PARG) is responsible for the catabolism of poly(ADP-ribose) synthesized by poly(ADP-ribose) polymerase (PARP-1) and other PARP-1-like enzymes. In this work, we report that PARG is cleaved during etoposide-, staurosporine-, and Fas-induced apoptosis in human cells. This cleavage is concomitant with PARP-1 processing and generates two C-terminal fragments of 85 and 74 kDa. In vitro cleavage assays using apoptotic cell extracts showed that a protease of the caspase family is responsible for PARG processing. A complete inhibition of this cleavage was achieved at nanomolar concentrations of the caspase inhibitor acetyl-Asp-Glu-Val-Asp-aldehyde, suggesting the involvement of caspase-3-like proteases. Consistently, recombinant caspase-3 efficiently cleaved PARG in vitro, suggesting the involvement of this protease in PARG processing in vivo. Furthermore, caspase-3-deficient MCF-7 cells did not show any PARG cleavage in response to staurosporine treatment. The cleavage sites identified by site-directed mutagenesis are DEID(256) downward arrow V and the unconventional site MDVD(307) downward arrow N. Kinetic studies have shown similar maximal velocity (V(max)) and affinity (K(m)) for both full-length PARG and its apoptotic fragments, suggesting that caspase-3 may affect PARG function without altering its enzymatic activity. The early cleavage of both PARP-1 and PARG by caspases during apoptosis suggests an important function for poly(ADP-ribose) metabolism regulation during this cell death process.  相似文献   
45.
The quantification of -acetolactate (AAL) extracellular oxidative decarboxylation during an AAL overproducing strain culture shows that this reaction is at the origin of about 90% of the diacetyl production and that only a small proportion of extracellular AAL is readily transformed to diacetyl. These results, compared with previous ones obtained with a non AAL accumulating strain, allow research options to be put forward for the improvement of microbiological diacetyl production.  相似文献   
46.
The phase behaviour of mixed molecular species of phosphatidylethanolamine, phosphatidylserine and sphingomyelin of biological origin were examined in aqueous co-dispersions using synchrotron X-ray diffraction. The co-dispersions of phospholipids studied were aimed to model the mixing of lipids populating the cytoplasmic and outer leaflets in the resting or scrambled activated cell membrane. Mixtures enriched with phosphatidylethanolamine and phosphatidylserine were characterized by a phase separation of non-lamellar phases (cubic and inverted hexagonal) with a lamellar gel phase comprising the most saturated molecular species. Inclusion of sphingomyelin in the mixture resulted in a suppression of the hexagonal-II phase in favour of lamellar phases at temperatures where a proportion of the phospholipid was fluid. The effect was also dependent on the total amount of sphingomyelin in ternary mixtures, and the lamellar phase dominated in mixtures containing more than 30 mol%, irrespective of the relative proportions of phosphatidylserine/sphingomyelin. A transition from gel to liquid-crystal phase was detected by wide-angle scattering during heating scans of ternary mixtures enriched in sphingomyelin and was shown by thermal cycling experiments to be coupled with a hexagonal-II phase to lamellar transition. In such samples there was evidence of a coexistence of non-lamellar phases with a lamellar gel phase. A transition of the gel phase to the fluid state on heating from 35 to 41 °C was evidenced by a progressive increase in the lamellar d-spacing. The presence of calcium enhanced the phase separation of a lamellar gel phase from a hexagonal-II phase in mixtures enriched in phosphatidylserine. This effect was counteracted by charge screening with 150 mM NaCl. The effect of sphingomyelin on stabilizing the lamellar phase is discussed in the context of an altered composition in the cytoplasmic/outer leaflets of the plasma membrane resulting from scrambling of the phospholipid distribution. The results suggest that a lamellar structure can be retained by the inward translocation of sphingomyelin in biological membranes. The presence of monovalent cations serves also to stabilize the bilayer in activated cells where a translocation of aminoglycerophospholipids and an influx of calcium occur simultaneously.Abbreviations PC phosphatidylcholine - PE phosphatidylethanolamine - PS phosphatidylserine - SAXS small-angle X-ray scattering - SM sphingomyelin - WAXS wide-angle X-ray scattering - XRD X-ray diffraction  相似文献   
47.
48.
Interactions between dendritic cells (DCs) and Mycobacterium tuberculosis, the etiological agent of tuberculosis, most likely play a key role in anti-mycobacterial immunity. We have recently shown that M. tuberculosis binds to and infects DCs through ligation of the DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and that M. tuberculosis mannose-capped lipoarabinomannan (ManLAM) inhibits binding of the bacilli to the lectin, suggesting that ManLAM might be a key DC-SIGN ligand. In the present study, we investigated the molecular basis of DC-SIGN ligation by LAM. Contrary to what was found for slow growing mycobacteria, such as M. tuberculosis and the vaccine strain Mycobacterium bovis bacillus Calmette-Guérin, our data demonstrate that the fast growing saprophytic species Mycobacterium smegmatis hardly binds to DC-SIGN. Consistent with the former finding, we show that M. smegmatis-derived lipoarabinomannan, which is capped by phosphoinositide residues (PILAM), exhibits a limited ability to inhibit M. tuberculosis binding to DC-SIGN. Moreover, using enzymatically demannosylated and chemically deacylated ManLAM molecules, we demonstrate that both the acyl chains on the ManLAM mannosylphosphatidylinositol anchor and the mannooligosaccharide caps play a critical role in DC-SIGN-ManLAM interaction. Finally, we report that DC-SIGN binds poorly to the PILAM and uncapped AraLAM-containing species Mycobacterium fortuitum and Mycobacterium chelonae, respectively. Interestingly, smooth colony-forming Mycobacterium avium, in which ManLAM is capped with single mannose residues, was also poorly recognized by the lectin. Altogether, our results provide molecular insight into the mechanisms of mycobacteria-DC-SIGN interaction, and suggest that DC-SIGN may act as a pattern recognition receptor and discriminate between Mycobacterium species through selective recognition of the mannose caps on LAM molecules.  相似文献   
49.
Transforming growth factor-beta (TGF-beta) is a key modulator of epidermal development and homeostasis, and has been shown to potently regulate keratinocyte migration and function during wound repair. There are three cloned TGF-beta receptors termed type I, type II, and type III that are found on most cell types. The types I and II are the signaling receptors, while the type III is believed to facilitate TGF-beta binding to the types I and II receptors. Recently, we reported that in addition to these receptors, human keratinocytes express a 150 kDa TGF-beta 1 binding protein (r150) which forms a heteromeric complex with the TGF-beta signaling receptors. This accessory receptor was described as glycosyl phosphatidylinositol-specific anchored based on its sensitivity to phosphatidylinositol phospholipase C (PIPLC). In the present study, we demonstrate that the GPI-anchor is contained in r150 itself and not on a tightly associated protein and that it binds TGF-beta 1 with an affinity similar to those of the types I and II TGF-beta signaling receptors. Furthermore, the PIPLC released (soluble) form of this protein is capable of binding TGF-beta 1 independently from the signaling receptors. In addition, we provide evidence that r150 is released from the cell surface by an endogenous phospholipase C. Our observation that r150 interacts with the TGF-beta signaling receptors, together with the finding that the soluble r150 binds TGF-beta 1 suggest that r150 in either its membrane anchored or soluble form may potentiate or antagonize TGF-beta signaling. Elucidating the mechanism by which r150 functions as an accessory molecule in TGF-beta signaling may be critical to understanding the molecular mechanisms underlying the regulation of TGF-beta action in keratinocytes.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号