首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143篇
  免费   10篇
  2023年   1篇
  2022年   5篇
  2021年   4篇
  2018年   3篇
  2017年   2篇
  2016年   5篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   3篇
  2010年   5篇
  2009年   1篇
  2008年   9篇
  2007年   8篇
  2006年   6篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   9篇
  2001年   6篇
  2000年   10篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1974年   2篇
  1973年   3篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   3篇
  1965年   2篇
排序方式: 共有153条查询结果,搜索用时 647 毫秒
121.
Plants and their microbial symbionts are often found to interact non‐randomly in nature, but we have yet to understand the mechanisms responsible for such preferential species associations. Theory predicts that host plants should select symbiotic partners bearing traits complementary to their own, as this should favor cooperation and evolutionary stability of mutualisms. Here, we present the first field‐based empirical test for this hypothesis using arbuscular mycorrhizas (AM), the oldest and most widespread plant symbiosis. Preferential associations occurring within a local plant–AM fungal community could not be predicted by the spatial distributions of interacting partners, nor by gradients in soil properties. Rather, plants with similar traits preferentially hosted similar AM fungi and, likewise, phylogenetically related AM fungi (assumed to have similar functional traits) interacted with similar plants. Our results suggest that trait‐based partner selection may have been a strong force in maintaining plant–AM fungal symbioses since the evolution of land plants.  相似文献   
122.
Classical mitogen-activated protein (MAP) kinases are activated by dual phosphorylation of the Thr-Xxx-Tyr motif in their activation loop, which is catalyzed by members of the MAP kinase kinase family. The atypical MAP kinases extracellular signal-regulated kinase 3 (ERK3) and ERK4 contain a single phospho-acceptor site in this segment and are not substrates of MAP kinase kinases. Previous studies have shown that ERK3 and ERK4 are phosphorylated on activation loop residue Ser-189/Ser-186, resulting in their catalytic activation. However, the identity of the protein kinase mediating this regulatory event has remained elusive. We have used an unbiased biochemical purification approach to isolate the kinase activity responsible for ERK3 Ser-189 phosphorylation. Here, we report the identification of group I p21-activated kinases (PAKs) as ERK3/ERK4 activation loop kinases. We show that group I PAKs phosphorylate ERK3 and ERK4 on Ser-189 and Ser-186, respectively, both in vitro and in vivo, and that expression of activated Rac1 augments this response. Reciprocally, silencing of PAK1/2/3 expression by RNA interference (RNAi) completely abolishes Rac1-induced Ser-189 phosphorylation of ERK3. Importantly, we demonstrate that PAK-mediated phosphorylation of ERK3/ERK4 results in their enzymatic activation and in downstream activation of MAP kinase-activated protein kinase 5 (MK5) in vivo. Our results reveal that group I PAKs act as upstream activators of ERK3 and ERK4 and unravel a novel PAK-ERK3/ERK4-MK5 signaling pathway.  相似文献   
123.
Aneuploidy is a common feature of human solid tumors and is often associated with poor prognosis. There is growing evidence that oncogenic signaling pathways, which are universally dysregulated in cancer, contribute to the promotion of aneuploidy. However, the mechanisms connecting signaling pathways to the execution of mitosis and cytokinesis are not well understood. Here, we show that hyperactivation of the ERK1/2 MAP kinase pathway in epithelial cells impairs cytokinesis, leading to polyploidization and aneuploidy. Mechanistically, deregulated ERK1/2 signaling specifically downregulates expression of the F-box protein Fbxw7β, a substrate-binding subunit of the SCFFbxw7 ubiquitin ligase, resulting in the accumulation of the mitotic kinase Aurora A. Reduction of Aurora A levels by RNA interference or pharmacological inhibition of MEK1/2 reverts the defect in cytokinesis and decreases the frequency of abnormal cell divisions induced by oncogenic H-RasV12. Reciprocally, overexpression of Aurora A or silencing of Fbxw7β phenocopies the effect of H-RasV12 on cell division. In vivo, conditional activation of MEK2 in the mouse intestine lowers Fbxw7β expression, resulting in the accumulation of cells with enlarged nuclei. We propose that the ERK1/2/ Fbxw7β/Aurora A axis identified in this study contributes to genomic instability and tumor progression.  相似文献   
124.
Summary Skeletal muscle mitochondrial forms of the tricarboxylic acid cycle enzymes were examined for genetic variance. The methods used revealed no genetic variants.  相似文献   
125.
Summary Phosphoglucomutase1 (PGM1) polymorphism was studied in a French-Canadian population of Québec city, Canada by means of a low voltage (max 500 V) isoelectric focusing (IEF) procedure on vertical polyacrylamide gel slabs. Frequencies of the four common PGM1 genes estimated from the phenotype distribution in 308 unrelated individuals were PGM 1 1+ , 0.61 (±0.02); PGM 1 1- , 0.13 (±0.01); PGM 1 1+ , 0.61 (±0.02); PGM 1 1- , 0.18 (±0.02); and PGM 1 1+ , 0.61 (±0.02); PGM 1 1- , 0.08 (±0.01). The segregation patterns observed in 154 families, which included 31 different mating types and 353 children, confirmed a Mendelian inheritance of four autosomal genes. The distribution of the PGM1 phenotypes observed or expected in a Hardy-Weinberg equilibrium was compared with that of other populations. A significant (P<0.001) difference was found between the Québec population and a Black population from Keneba, Gambia, West-Africa.  相似文献   
126.
BACKGROUND: The agouti yellow mouse shows adult onset of moderate obesity and diabetes. A depressed basal lipolytic rate in adipocytes or a decreased adrenergic tone arising from antagonizing alpha-melanocyte-stimulating hormone (MSH) activation of melanocortin receptors (MCR) could be at the origin of the obesity phenotype. MATERIAL AND METHODS: MCR 4 and 5 (MC4R, MC5R) genes were studied in the Québec Family Study. Sequence variations were detected by Southern blot probing of restricted genomic DNA, and mRNA tissue expression was detected by RT-PCR. Subjects with a wide range of weight were used for single-point sib-pair linkage studies (maximum of 289 sibships from 124 nuclear families). Analysis of variance across genotypes in unrelated males (n = 143) and females (n = 156) was also undertaken. Body mass index (BMI), sum of six skin-folds (SF6), fat mass (FM), percent body fat (%FAT), respiratory quotient (RQ), resting metabolic rate (RMR), fasting glucose and insulin, and glucose and insulin area during an oral glucose tolerance test were analyzed. RESULTS: MC4R showed polymorphism with NcoI, and MC5R, with PstI and PvuII, with a heterozygosity of 0.38, 0.10, and 0.20, respectively. Linkages were observed between MC5R and BMI (p = 0.001), SF6 (p = 0.005), FM (p = 0.001), and RMR (p = 0.002), whereas associations were observed in females between MC5R and BMI (p = 0.003), and between MC4R and FM (p = 0.002) and %FAT (p = 0.004). After correction for multiple tests, these p values are lowered by one tenth. MC4R and MC5R mRNAs have been detected in brain, adipose tissue, and skeletal muscle. CONCLUSIONS: MC4R and MC5R exhibit evidence of linkage or association with obesity phenotypes, but this evidence is strongest for MC5R.  相似文献   
127.
This paper presents the eleventh update of the human obesity gene map, which incorporates published results up to the end of October 2004. Evidence from single‐gene mutation obesity cases, Mendelian disorders exhibiting obesity as a clinical feature, transgenic and knockout murine models relevant to obesity, quantitative trait loci (QTLs) from animal cross‐breeding experiments, association studies with candidate genes, and linkages from genome scans is reviewed. As of October 2004, 173 human obesity cases due to single‐gene mutations in 10 different genes have been reported, and 49 loci related to Mendelian syndromes relevant to human obesity have been mapped to a genomic region, and causal genes or strong candidates have been identified for most of these syndromes. There are 166 genes which, when mutated or expressed as transgenes in the mouse, result in phenotypes that affect body weight and adiposity. The number of QTLs reported from animal models currently reaches 221. The number of human obesity QTLs derived from genome scans continues to grow, and we have now 204 QTLs for obesity‐related phenotypes from 50 genome‐wide scans. A total of 38 genomic regions harbor QTLs replicated among two to four studies. The number of studies reporting associations between DNA sequence variation in specific genes and obesity phenotypes has also increased considerably with 358 findings of positive associations with 113 candidate genes. Among them, 18 genes are supported by at least five positive studies. The obesity gene map shows putative loci on all chromosomes except Y. Overall, >600 genes, markers, and chromosomal regions have been associated or linked with human obesity phenotypes. The electronic version of the map with links to useful publications and genomic and other relevant sites can be found at http:obesitygene.pbrc.edu .  相似文献   
128.
BACKGROUND: UCP3 is a mitochondrial membrane transporter that is postulated to uncouple oxidative phosphorylation from ATP synthesis producing heat instead of ATP. Human UCP3 is mainly expressed in skeletal muscle, which plays an important role in energy homeostasis and substrate oxidation. Therefore, UCP3 is a good candidate gene for obesity. MATERIALS AND METHODS: We analyzed, among 734 subjects from the Québec Family Study, a new GA repeat microsatellite located in intervening sequence (IVS) 6 (GAIVS6) in UCP3 gene, and two already described restriction fragment length polymorphisms (RFLP) Y210Y(C-->T) and V102I(G-->A). Covariance analysis across genotypes for different adiposity, resting energy expenditure, and glucose metabolism variables was undertaken with age and sex, plus body fat and body mass for nonadiposity phenotypes, as covariates. RESULTS: We found strong associations between GAIVS6 and body mass index (p = 0.0001), fat mass (p = 0.0005), percentage body fat (p = 0.0004), the sum of six skinfold thickness (p = 0.0001), and leptin level (p = 0.0001). Homozygote for the GAIVS6 240 bp alleles (15% frequency in QFS) showed higher adiposity than subjects with the GAIVS6 238 bp allele (70% in QFS). The exons, the 5' untranslated region (UTR), and the exon-intron junctions of UCP3 gene from subjects homozygote for either GAIVS6 238 bp or 240 bp alleles were sequenced in search for mutations. Variants 5'UTR-55C-->T and Y210Y(C-->T) were detected, whereas IVS4-36C-->T was uncovered, but no new exonic or splice junction mutation was observed. RFLP Y210Y(C-->T) was not associated to adiposity in QFS; V1021(G-->A) showed no variation. CONCLUSION: Our results suggest that some alleles of UCP3 are involved in the etiology of human obesity.  相似文献   
129.
More than 99.9 % of the sequence is identical when comparing the DNA from two individuals. The remaining 0.1 % is responsible, along with other factors such as the environment, for the risk level of developing complex diseases (such as asthma, diabetes or cancer) or for the different pharmacological response to drugs. Despite the incredible advances in genomics in the past few years, identifying the variants involved remains difficult because of the prodigious amount of information to process. The recent completion of the Haplotype Map of the human genome has raised great hopes in the field as it is expected to help reduce the complexity of association studies and thus accelerate the discovery of genes associated with complex diseases. This review details the rationale behind the HapMap project, gives a summary of the results and also describes potential applications of the Haplotype Map.  相似文献   
130.
A plant's ability to maintain or improve its yield under limiting conditions,such as nutrient de ficiency or drought,can be strongly in fluenced by root system architecture(RSA),the three-dimensional distribution of the different root types in the soil. The ability to image,track and quantify these root system attributes in a dynamic fashion is a useful tool in assessing desirable genetic and physiological root traits. Recent advances in imaging technology and phenotyping software have resulted in substantive progress in describing and quantifying RSA. We have designed a hydroponic growth system which retains the three-dimensional RSA of the plant root system,while allowing for aeration,solution replenishment and the imposition of nutrient treatments,as well as high-quality imaging of the root system. The simplicity and flexibility of the system allows for modi fications tailored to the RSA of different crop species and improved throughput. This paper details the recent improvements and innovations in our root growth and imaging system which allows for greater image sensitivity(detection of fine roots and other root details),higher ef ficiency,and a broad array of growing conditions for plants that more closely mimic those found under field conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号