首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22851篇
  免费   2007篇
  国内免费   222篇
  2023年   119篇
  2022年   222篇
  2021年   486篇
  2020年   325篇
  2019年   379篇
  2018年   476篇
  2017年   407篇
  2016年   613篇
  2015年   1002篇
  2014年   993篇
  2013年   1326篇
  2012年   1549篇
  2011年   1454篇
  2010年   960篇
  2009年   889篇
  2008年   1215篇
  2007年   1176篇
  2006年   1035篇
  2005年   1018篇
  2004年   1040篇
  2003年   978篇
  2002年   1031篇
  2001年   521篇
  2000年   425篇
  1999年   440篇
  1998年   293篇
  1997年   236篇
  1996年   229篇
  1995年   233篇
  1994年   192篇
  1993年   187篇
  1992年   272篇
  1991年   271篇
  1990年   207篇
  1989年   225篇
  1988年   188篇
  1987年   180篇
  1986年   149篇
  1985年   186篇
  1984年   174篇
  1983年   147篇
  1982年   152篇
  1981年   148篇
  1980年   119篇
  1979年   125篇
  1978年   124篇
  1977年   110篇
  1976年   88篇
  1975年   87篇
  1973年   88篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
21.
Experiment I used non-naive pigeons having previously performed on both keypecking and treadlepressing Fixed Interval schedules. In condition IT, treadlepressing was reinforced on successive Fixed Interval 60 seconds, Fixed Time 60 seconds and Fixed Interval 60 seconds schedules. Subsequently (condition IK), the same subjects pecked a key on an identical schedule sequence (FI60, FT60, FI60). In Experiment II, separate groups of naïve subjects were assigned either to treadlepressing (condition IIT) or keypecking (condition IIK) and to the same schedule sequence (FI60, FT60, FI60). Treadle pressing and keypecking decreased greatly in Fixed Time schedules. Curvature indices, pauses and running rates were less sensitive than response rates to the switching from one schedule to the other. Experiments I and II yielded similar results, experimental history accounting only for minor differences. The results were discussed in relation to interspecies differences in the temporal regulation of behavior and operant versus respondent control of the response and schedule-induced behaviour.  相似文献   
22.
23.
Ohne Zusammenfassung  相似文献   
24.
The different modes of stem cell division are tightly regulated to balance growth and differentiation during organ development and homeostasis. However, the mechanisms controlling such events are not fully understood. We have developed markers that provide the single cell resolution necessary to identify the three modes of division occurring in a developing nervous system: self-expanding, self-renewing, and self-consuming. Characterizing these three modes of division during interneuron generation in the developing chick spinal cord, we demonstrated that they correlate to different levels of activity of the canonical bone morphogenetic protein effectors SMAD1/5. Functional in vivo experiments showed that the premature neuronal differentiation and changes in cell cycle parameters caused by SMAD1/5 inhibition were preceded by a reduction of self-expanding divisions in favor of self-consuming divisions. Conversely, SMAD1/5 gain of function promoted self-expanding divisions. Together, these results lead us to propose that the strength of SMAD1/5 activity dictates the mode of stem cell division during spinal interneuron generation.  相似文献   
25.
Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.  相似文献   
26.
SUMMARY The molecular mechanisms underlying the formation and patterning of the nervous system are relatively poorly understood for lophotrochozoans (like annelids) as compared with ecdysozoans (especially Drosophila ) and deuterostomes (especially vertebrates). Therefore, we have undertaken a candidate gene approach to study aspects of neurogenesis in a polychaete annelid Platynereis dumerilii . We determined the spatiotemporal expression for Platynereis orthologs of four genes ( SoxB, Churchill, prospero / Prox , and SoxC) known to play key roles in vertebrate neurogenesis. During Platynereis development, SoxB is expressed in the neuroectoderm and its expression switches off when committed neural precursors are formed. Subsequently, Prox is expressed in all differentiating neural precursors in the central and peripheral nervous systems. Finally, SoxC and Churchill are transcribed in patterns consistent with their involvement in neural differentiation. The expression patterns of Platynereis SoxB and Prox closely resemble those in Drosophila and vertebrates—this suggests that orthologs of these genes play similar neurogenic roles in all bilaterians. Whereas Platynereis SoxC , like its vertebrate orthologs, plays a role in neural cell differentiation, related genes in Drosophila do not appear to be involved in neurogenesis. Finally, conversely to Churchill in Platynereis , vertebrate orthologs of this gene are expressed during neuroectoderm formation, but not later during nerve cell differentiation; in the insect lineage, homologs of these genes have been secondarily lost. In spite of such instances of functional divergence or loss, the present study shows conspicuous similarities in the genetic control of neurogenesis among bilaterians. These commonalities suggest that key features of the genetic program for neurogenesis are ancestral to bilaterians.  相似文献   
27.
Copper is an essential yet toxic metal ion. To satisfy cellular requirements, while, at the same time, minimizing toxicity, complex systems of copper trafficking have evolved in all cell types. The best conserved and most widely distributed of these involve Atx1-like chaperones and P1B-type ATPase transporters. Here, we discuss current understanding of how these chaperones bind Cu(I) and transfer it to the Atx1-like N-terminal domains of their cognate transporter.  相似文献   
28.
29.
Alternative splicing of 3′-terminal exons plays a critical role in gene expression by producing mRNA with distinct 3′-untranslated regions that regulate their fate and their expression. The Xenopus α-tropomyosin pre-mRNA possesses a composite internal/3′-terminal exon (exon 9A9′) that is differentially processed depending on the embryonic tissue. Exon 9A9′ is repressed in non-muscle tissue by the polypyrimidine tract binding protein, whereas it is selected as a 3′-terminal or internal exon in myotomal cells and adult striated muscles, respectively. We report here the identification of an intronic regulatory element, designated the upstream terminal exon enhancer (UTE), that is required for the specific usage of exon 9A9′ as a 3′-terminal exon in the myotome. We demonstrate that polypyrimidine tract binding protein prevents the activity of UTE in non-muscle cells, whereas a subclass of serine/arginine rich (SR) proteins promotes the selection of exon 9A9′ in a UTE-dependent way. Morpholino-targeted blocking of UTE in the embryo strongly reduced the inclusion of exon 9A9′ as a 3′-terminal exon in the endogenous mRNA, demonstrating the function of UTE under physiological circumstances. This strategy allowed us to reveal a splicing pathway that generates a mRNA with no in frame stop codon and whose steady-state level is translation-dependent. This result suggests that a non-stop decay mechanism participates in the strict control of the 3′-end processing of the α-tropomyosin pre-mRNA.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号