首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   18篇
  452篇
  2023年   2篇
  2022年   6篇
  2021年   8篇
  2020年   4篇
  2019年   10篇
  2018年   9篇
  2017年   10篇
  2016年   4篇
  2015年   14篇
  2014年   22篇
  2013年   29篇
  2012年   33篇
  2011年   34篇
  2010年   20篇
  2009年   13篇
  2008年   24篇
  2007年   18篇
  2006年   17篇
  2005年   35篇
  2004年   9篇
  2003年   26篇
  2002年   11篇
  2001年   5篇
  2000年   5篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   8篇
  1995年   4篇
  1994年   9篇
  1992年   2篇
  1990年   9篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   5篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有452条查询结果,搜索用时 0 毫秒
91.
92.
N-Hydroxymethylpentamethylmelamine (HMPMM) was identified by HPLC and by GLC-MS after derivatization, as a metabolite of the anticancer drug hexamethylmelamine (HMM) in incubation mixtures with fortified mouse liver 9000 × g and microsomal preparations. HMPMM formation was dependent on the presence of NADPH and oxygen. N-demethylated metabolites were also found. HMPMM displays appreciable chemical stability and 29% was recovered after 60 min incubation in buffer. HMPMM constituted more than 50% of total HMM metabolites in 30 min incubations. The known chemical reactivity of carbinolamines means that HMPMM could be involved in the pharmacological or toxic effects of HMM.  相似文献   
93.
94.
95.
The 5′-adenosine monophosphate-activated protein kinase (AMPK) is a key regulator of the cellular energy metabolism and may induce either cell survival or death. We previously reported that in SH-SY5Y human neuroblastoma cells stimulation of muscarinic acetylcholine receptors (mAChRs) activate AMPK by triggering store-operated Ca2+ entry (SOCE). However, whether mAChRs may control AMPK activity by regulating additional mechanisms beyond SOCE remains to be investigated. In the present study we examined the effects of mAChRs on AMPK when SOCE was induced by the sarco–endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin. We found that in SH-SY5Y cells depleted of Ca2+ by thapsigargin, the re-addition Ca2+ to the medium stimulated AMPK phosphorylation at Thr172, which is required for full kinase activity. This response occurred through SOCE, as it was blocked by either the SOCE modulator 2-aminoethoxydiphephenyl borate, knockdown of the SOCE molecular component STIM1, or inhibition of Ca2+/calmodulin (CaM)-dependent protein kinase kinase β (CaMKKβ). In thapsigargin-pretreated cells, stimulation of pharmacologically defined M3 mAChRs potentiated SOCE-induced AMPK activation. This potentiation did not involve an increased Ca2+ influx, but was associated with CaM mobilization from membrane to cytosol, increased CaM/CaMKKβ interaction, and enhanced CaMKK stimulation by thapsigargin-induced SOCE. In thapsigargin-pretreated cells Ca2+ re-addition stimulated glucose uptake and increased the membrane expression of the glucose transporter GLUT1. Both responses were significantly potentiated by mAChRs. These data indicate that in human neuroblastoma cells mAChRs up-regulate AMPK and the downstream glucose uptake by triggering not only SOCE but also CaM translocation and enhanced formation of active CaM/CaMKKβ complexes.  相似文献   
96.
The structure and absolute stereochemistry of vanillosmin were established by chemical and spectral evidence and by comparison with O-acetyl-isophoto-α-santonic lactone and tetrahydroartabsin “C”.  相似文献   
97.
The distribution of labeled RNA in the optic nerve of the rabbit was studied by quantitative ultrastructural autoradiography after the intraocular injection of [3H]uridine. The highest density of silver grains related to [3H]RNA (27–40 grains/100 µm2) was found in glial cell perikarya; a slightly lower density was present in the glial nuclei (19–20 grains/100 µm2). Axons (4–5 grains/100 µm2) and myelin (2–3 grains/100 µm2) had the lowest grain densities. 74–83% of all counted grains were located outside the axons. By comparing the grain density distribution over the axon with that expected in the case of an exclusive labeling of the surrounding myelin and glial cell processes, it was concluded that the axons contained a number of grains representing [3H]RNA significantly higher than that expected to scatter from myelin and glial processes. Most of these grains were concentrated at the periphery of the axon and were not related to axonal mitochondria.  相似文献   
98.
Bitemporal intracerebral injections of puromycin in mice suppress indefinitely expression of memory of avoidance-discrimination learning. Ultrastructural studies of the entorhinal cortex of puromycin-treated mice revealed the following: (a) Abnormalities were not observed in presynaptic terminals and synaptic clefts; many postsynaptic dendrites or somas contained swollen mitochondria. (b) Dispersion of polyribosomes into single units or condensation of ribosomes into irregular aggregates with loss of "distinctiveness" was noted in a few neurons 7–27 hr after puromycin treatment. (c) Cytoplasmic aggregates of granular or amorphous material were frequently noted within otherwise normal neuronal perikarya. (d) Mitochondria in many neuronal perikarya and dendrites were swollen. Mitochondria in axons, presynaptic terminals, and glial cells were unaltered. The relationships between these lesions and the effect of puromycin on protein synthesis and memory are examined. It is suggested that the disaggregation of polysomes is too limited to explain the effect of puromycin on memory. Special emphasis is given to the swelling of mitochondria. The possible mechanisms and the significance of this lesion are discussed.  相似文献   
99.
The toxicological implications of alterations in intracellular thiol homeostasis during menadione metabolism have been investigated using freshly isolated rat hepatocytes. A strict correlation between depletion of protein sulfhydryl groups and loss of cell viability was observed. Loss of protein thiols preceded cell death, and occurred more rapidly in cells with decreased levels of reduced glutathione. Depletion of protein thiols was also associated with inhibition of Ca2+ efflux from the cells and perturbation of intracellular Ca2+ homeostasis. It is proposed that the oxidative stress induced by menadione metabolism in isolated hepatocytes results in the depletion of both soluble and protein thiols, and that the latter effect is critically associated with a perturbation of Ca2+ homeostasis and loss of cell viability.  相似文献   
100.
The crystal structures of dithionite-reduced bovine Cu(I),Zn superoxide dismutase and of its adducts with the inorganic anions azide and thyocyanide have been determined in a C2221 crystal form obtained at pH?5.0. This crystal form is characterized by a high solvent content (72%) and by having the two Cu,ZnSOD monomers (A and B) in different crystal environments. One of them (B) is involved in few intermolecular crystal contacts so that it is in a more "solution like" environment, as indicated by average temperature factors which are about twice those of the other monomer. The differences in crystal packing affect the active site structures. While in the A monomer the Cu(I) is coordinated to all four histidine residues, in the B monomer the bridging His61 side chain is found disordered, implying partial detachment from copper. The same effect occurs in the structures of the anion complexes. The inorganic anions are found bound in the active site cavity, weakly interacting with copper at distances ranging from 2.5 to 2.8?Å. The copper site in the A subunit of the native enzyme structure displays significant electron density resembling a diatomic molecule, bound side-on at about 2.8?Å from the metal, which cannot be unambiguously interpreted. The crystallographic data suggest that the existence of the His61 bridge between copper and zinc is dominated by steric more than electronic factors and that the solution state favors the His61 detachment. These structures confirm the existence of an energetically available state for Cu(I) in Cu,ZnSOD where the histidinato bridge to zinc is maintained. This state appears to be favored by tighter crystal contacts. The binding of the anions in the active site cavity is different from that observed in the oxidized enzyme and it appears to be dominated by electrostatic interactions within the cavity. The anion binding mode observed may model the substrate interaction with the reduced enzyme during catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号