首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   17篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   7篇
  2012年   10篇
  2011年   12篇
  2010年   6篇
  2009年   3篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1984年   2篇
排序方式: 共有106条查询结果,搜索用时 31 毫秒
41.
Group B Streptococcus (GBS) has developed several strategies to evade immune defenses. We show that GBS induces macrophage (Mphi) membrane permeability defects and apoptosis, prevented by inhibition of calcium influx but not caspases. We analyze the molecular mechanisms of GBS-induced murine Mphi apoptosis. GBS causes a massive intracellular calcium increase, strictly correlated to membrane permeability defects and apoptosis onset. Calcium increase was associated with activation of calcium-dependent protease calpain, demonstrated by casein zymography, alpha-spectrin cleavage to a calpain-specific fragment, fluorogenic calpain-substrate cleavage, and inhibition of these proteolyses by calpain inhibitors targeting the calcium-binding, 3-(4-Iodophenyl)-2-mercapto-(Z)-2-propenoic acid, or active site (four different inhibitors), by calpain small-interfering-RNA (siRNA) and EGTA. GBS-induced Mphi apoptosis was inhibited by all micro- and m-calpain inhibitors used and m-calpain siRNA, but not 3-(5-Fluoro-3-indolyl)-2-mercapto-(Z)-2-propenoic acid (micro-calpain inhibitor) and micro-calpain siRNA indicating that m-calpain plays a central role in apoptosis. Calpain activation is followed by Bax and Bid cleavage, cytochrome c, apoptosis-inducing factor, and endonuclease G release from mitochondria. In GBS-induced apoptosis, cytochrome c did not induce caspase-3 and -7 activation because they and APAF-1 were degraded by calpains. Therefore, apoptosis-inducing factor and endonuclease G seem the main mediators of the calpain-dependent but caspase-independent pathway of GBS-induced apoptosis. Proapoptotic mediator degradations do not occur with nonhemolytic GBS, not inducing Mphi apoptosis. Apoptosis was reduced by Bax siRNA and Bid siRNA suggesting Bax and Bid degradation is apoptosis correlated. This signaling pathway, different from that of most pathogens, could represent a GBS strategy to evade immune defenses.  相似文献   
42.
A series of pyrrolo[2,3-d]pyridazinones was synthesized and tested for their inhibitory activity on PDE4 subtypes A, B and D and selectivity toward Rolipram high affinity binding site (HARBS). New agents with interesting profile were reported; in particular compound 9e showed a good PDE4 subtype selectivity, being 8 times more potent (IC50 = 0.32 μM) for PDE4B (anti-inflammatory) than for PDE4D (IC50 = 2.5 μM), generally considered the subtype responsible for emesis. Moreover the ratio HARBS/PDE4B was particularly favourable for 9e (147), suggesting that the best arranged groups around the pyrrolopyridazinone core are an isopropyl at position-1, an ethoxycarbonyl at position-2, together with an ethyl group at position-6.

For compounds 8 and 15a the ability to inhibit TNFα production in PBMC was evaluated and the results are consistent with their PDE4 inhibitory activity.  相似文献   
43.
Group B Streptococcus (GBS) causes severe infection in the central nervous system. In this study, brain mitochondrial function was investigated by simulating infection of isolated mitochondria with GBS, which resulted in loss of mitochondrial activity. The β-hemolysin expressing strains GBS-III-NEM316 and GBS-III-COH31, but not the gGBS-III-COH31 that does not express β-hemolysin, caused dissipation of preformed mitochondrial membrane potential (Δψm). This indicates that β-hemolysin is responsible for decreasing of the reducing power of mitochondria. GBS-III-COH31 interacted with mitochondria causing increase of oxygen consumption, due to uncoupling of respiration, blocking of ATP synthesis, and cytochrome c release outside mitochondria. Moreover, the mitochondrial systems contributing to the control of cellular Ca2+ uptake were lost. In spite of these alterations, mitochondrial phospholipid content and composition did not change significantly, as evaluated by MALDI-TOF mass spectrometry. However, exogenous cardiolipin (CL) and dipalmitoylphosphatidylcholine (DPPC) attenuated the uncoupling effect of GBS-III-COH31, although with different mechanisms. CL was effective only when fused to the inner mitochondrial membrane, probably reducing the extent of GBS-induced proton leakage. DPPC, which is not able to fuse with mitochondrial membranes, exerted its effect outside mitochondria, likely by shielding mitochondria against GBS β-hemolysin attack.  相似文献   
44.
Summary .  Motivated by molecular data on female premutation carriers of the fragile X mental retardation 1 ( FMR1 ) gene, we present a new method of covariate adjusted correlation analysis to examine the association of messenger RNA (mRNA) and number of CGG repeat expansion in the  FMR1  gene. The association between the molecular variables in female carriers needs to adjust for activation ratio (ActRatio), a measure which accounts for the protective effects of one normal X chromosome in females carriers. However, there are inherent uncertainties in the exact effects of ActRatio on the molecular measures of interest. To account for these uncertainties, we develop a flexible adjustment that accommodates both additive and multiplicative effects of ActRatio nonparametrically. The proposed adjusted correlation uses local conditional correlations, which are local method of moments estimators, to estimate the Pearson correlation between two variables adjusted for a third observable covariate. The local method of moments estimators are averaged to arrive at the final covariate adjusted correlation estimator, which is shown to be consistent. We also develop a test to check the nonparametric joint additive and multiplicative adjustment form. Simulation studies illustrate the efficacy of the proposed method. (Application to  FMR1  premutation data on 165 female carriers indicates that the association between mRNA and CGG repeat after adjusting for ActRatio is stronger.) Finally, the results provide independent support for a specific jointly additive and multiplicative adjustment form for ActRatio previously proposed in the literature.  相似文献   
45.
Deletion of the 1.5–3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS), also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%), conotruncal defects of the heart (CHD; 70–80%), hypocalcemia (20–60%), and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.  相似文献   
46.
Group B Streptococcus (GBS) has evolved several strategies to avoid host defences where macrophages are one of main targets. Since pathogens frequently target the cytoskeleton to evade immune defences, we investigated if GBS manipulates macrophage cytoskeleton. GBS-III-COH31 in a time- and infection ratio-dependent manner induces great macrophage cytoskeleton alterations, causing degradation of several structural and regulatory cytoskeletal proteins. GBS β-haemolysin is involved in cytoskeleton alterations causing plasma membrane permeability defects which allow calcium influx and calpain activation. In fact, cytoskeleton alterations are not induced by GBS-III-COH31 in conditions that suppress β-haemolysin expression/activity and in presence of dipalmitoylphosphatidylcholine (β-haemolysin inhibitor). Calpains, particularly m-calpain, are responsible for GBS-III-COH31-induced cytoskeleton disruption. In fact, the calpain inhibitor PD150606, m-calpain small-interfering-RNA and EGTA which inhibit calpain activation prevented cytoskeleton degradation whereas μ-calpain and other protease inhibitors did not. Finally, calpain inhibition strongly increased the number of viable intracellular GBS-III-COH31, showing that cytoskeleton alterations reduced macrophage phagocytosis. Marked macrophage cytoskeleton alterations are also induced by GBS-III-NEM316 and GBS-V-10/84 through β-haemolysin-mediated plasma membrane permeability defects which allow calpain activation. This study suggests a new GBS strategy to evade macrophage antimicrobial responses based on cytoskeleton disruption by an unusual mechanism mediated by calcium influx and calpain activation.  相似文献   
47.
The UN1 monoclonal antibody recognized the UN1 antigen as a heavily sialylated and O-glycosylated protein with the apparent molecular weight of 100-120 kDa; this antigen was peculiarly expressed in fetal tissues and several cancer tissues, including leukemic T cells, breast, and colon carcinomas. However, the lack of primary structure information has limited further investigation on the role of the UN1 antigen in neoplastic transformation. In this study, we have identified the UN1 antigen as CD43, a transmembrane sialoglycoprotein involved in cell adhesion, differentiation, and apoptosis. Indeed, mass spectrometry detected two tryptic peptides of the membrane-purified UN1 antigen that matched the amino acidic sequence of the CD43 intracellular domain. Immunological cross-reactivity, migration pattern in mono- and bi-dimensional electrophoresis, and CD43 gene-dependent expression proved the CD43 identity of the UN1 antigen. Moreover, the monosaccharide GalNAc-O-linked to the CD43 peptide core was identified as an essential component of the UN1 epitope by glycosidase digestion of specific glycan branches. UN1-type CD43 glycoforms were detected in colon, sigmoid colon, and breast carcinomas, whereas undetected in normal tissues from the same patients, confirming the cancer-association of the UN1 epitope. Our results highlight UN1 monoclonal antibody as a suitable tool for cancer immunophenotyping and analysis of CD43 glycosylation in tumorigenesis.  相似文献   
48.
WHIM syndrome is a dominantly inherited primary immunodeficiency disorder representing the first identified example of human disease caused by mutations in the gene encoding for the chemokine receptor CXCR4. Pathogenesis is mediated by CXCR4 hyperfunction, leading to increased responsiveness to its unique ligand CXCL12 (also known as SDF-1). The altered CXCR4/CXCL12 interaction likely impairs cellular homeostasis and trafficking, resulting in immunological dysfunctions. The acronym WHIM resumes the main features of the syndrome: Warts, Hypogammaglobulinemia, Infections and Myelokathexis, which is abnormal retention of mature neutrophils in the bone marrow. WHIM patients suffer from recurrent bacterial infections since childhood and manifest a specific susceptibility to HPV infections. Hematological findings include neutropenia, lymphopenia and hypogammaglobulinemia. Because of the rarity of the disease and the heterogeneity in clinical presentation, diagnosis is often delayed. In the majority of patients, the phenotype is incomplete at the onset and WHIM syndrome is not suspected. Early identification may improve clinical and therapeutic management. Symptomatic treatments include G-CSF, substitutive immunoglobulins and antibiotic prophylaxis. A new therapeutic strategy might include the potent inhibitor of CXCR4 function plerixafor (Mozobil), as an agent specifically targeting the molecular defect in order to attenuate the phenotypic manifestations of the syndrome.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号