首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   5篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   8篇
  2017年   1篇
  2016年   5篇
  2015年   7篇
  2014年   10篇
  2013年   13篇
  2012年   15篇
  2011年   10篇
  2010年   8篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   8篇
  2005年   6篇
  2004年   14篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
  1929年   1篇
排序方式: 共有198条查询结果,搜索用时 15 毫秒
131.
The main aim of this study, which is based on cover-abundance values of 20 species of floating-leaved and submersed macrophytes collected in 18 lakes located within the River Po catchment basin (Italy), is to investigate the relationships between lake-scale environmental features (including morphology, hydrology, trophic state and water quality variables) and the changes in species composition and species richness in macrophyte communities. The findings reveal that the main changes in community composition of the pondweed communities, identified by principal component analysis, could be effectively explained by a newly introduced morpho-hydrological parameter (the theoretical laminar water renewal rate – R L) and by the trophic state of the lakes, expressed as Carlson’s trophic state index (TSI). The results of the multivariate analyses performed also show that the grouping of species is strictly related to growth-form traits. In particular, floating-leaved and submerged macrophytes appeared mutually exclusive in dominating different habitat types defined on the basis of the R L–TSI framework. An increasing trend in species richness was also observed in relation to R L. The possibility of using the bivariate R L–TSI framework for the identification of habitat utilisation patterns by single species was also investigated, and cover-abundance prediction maps based on the R L–TSI framework were produced for several macrophyte species. Observations in another system characterised by high spatial heterogeneity for hydrological and trophic conditions, support the predictions in terms of growth-form prevalence, species richness and single species cover-abundance (where available), and also suggest a more refined application of the proposed approach.  相似文献   
132.
133.
Familial amyotrophic lateral sclerosis (ALS)-linked mutations in the copper-zinc superoxide dismutase (SOD1) gene cause motor neuron death in about 3% of ALS cases. While the wild-type (wt) protein is anti-apoptotic, mutant SOD1 promotes apoptosis. We now demonstrate that both wt and mutant SOD1 bind the anti-apoptotic protein Bcl-2, providing evidence of a direct link between SOD1 and an apoptotic pathway. This interaction is evident in vitro and in vivo in mouse and human spinal cord. We also demonstrate that in mice and humans, Bcl-2 binds to high molecular weight SDS-resistant mutant SOD1 containing aggregates that are present in mitochondria from spinal cord but not liver. These findings provide new insights into the anti-apoptotic function of SOD1 and suggest that entrapment of Bcl-2 by large SOD1 aggregates may deplete motor neurons of this anti-apoptotic protein.  相似文献   
134.
Several of the most virulent Salmonella enterica strains possess two genes encoding periplasmic Cu,Zn superoxide dismutase, sodC1 and sodC2, located on a lambdoid prophage and on the chromosome, respectively. These genes contribute to Salmonella virulence by protecting bacteria from superoxide generated by the host's phagocytes. To investigate the respective contributions of sodC1 and sodC2 to the virulence of a clinical isolate of Salmonella enterica serovar Choleraesuis (S. choleraesuis), we have analyzed both the intracellular survival of wild type and sodC mutant strains within J774 macrophages and Caco-2 cells, and their ability to proliferate in intraperitoneally-infected mice in competition assays. In agreement with previous studies, mutant strains lacking one or both sodC genes were equally impaired in their ability to survive within activated macrophages. However, when macrophage killing experiments were carried out with non-opsonized bacteria, sodC2 contributed to intracellular survival more than sodC1, indicating that changes in the pathways of bacterial uptake can modify the relative role of the two sodC genes. More unexpectedly, we have found that the ability of S. choleraesuis to survive within Caco-2 cells was severely affected by inactivation of sodC genes, sodC2 being more important than sodC1. As Caco-2 cells actively produce superoxide, this suggests that oxygen radical production by colonic cells has a role in controlling proliferation of facultative intracellular bacteria. Mouse infection studies confirmed that, in the S. choleraesuis strain under investigation, both sodC genes are required to confer full virulence, sodC2 contributing slightly more than sodC1 to Salmonella pathogenesis. Our findings contrast with the results of other studies carried out in S. enterica serovar Typhimurium and suggest that the relative contributions of sodC1 and sodC2 to host-pathogen interactive biology may vary depending on the Salmonella serovar or strain.  相似文献   
135.
The ratio of entropy generation rate to entropy embodied in structures relatively to the surroundings can be considered as an indicator of the ability of a self-organizing dissipative system to maintain itself far from equilibrium by pumping out entropy. The higher the ratio (which may be called the specific entropy production or the specific dissipation of a system), the lower the capacity of a system to convert the incoming low-entropy energy into internal organization. It appears that the ratio attains special significance for interpreting the evolution of biological systems, as the maximum expression of self-organizing systems, from the sub-cellular to the ecosystem scale. This paper proposes specific dissipation, written as the ratio of biological entropy production to exergy stored in the living biomass, as a thermodynamic orientor as well as an indicator of the development state of ecological systems. After having presented a method for estimating the specific dissipation in lakes, the adequacy of the proposed indicator is discussed and also tested by comparing its response to those of some classical ecological attributes (successional sequences of species, biodiversity, individual body size, structural organization and generation time of organisms) throughout the seasonal progression of the plankton community in Lake Trasimeno (Umbria, Italy). The results support the hypothesis that the minimization of specific dissipation is a primary criterion of evolution of ecological systems and also sustain the use of specific dissipation as an indicator of ecological maturity.  相似文献   
136.
The immune system of vertebrates detects bacterial DNA as a "danger signal" based on the presence of unmethylated CpG motifs. We examined whether oligodeoxynucleotides (ODNs) with CpG motifs (CpG-ODNs) also induce mobilization of hematopoietic progenitor cells (HPCs). Mice challenged with CpG-ODNs showed an increase in peripheral blood colony-forming units (CFU) with a peak at day 4 after treatment, associated with an increase, starting 30 min after CpG treatment, in serum levels of mouse keratinocyte-derived chemokine (mKC), a functional homolog of human interleukin (IL) 8; production of granulocyte-colony-stimulating factor (CSF) was also detected. Mobilization and mKC induction were sequence-specific and dose-dependent occurring even with low doses of CpG-ODNs. Interestingly, intestinal cells were involved in mKC production. HPC mobilization by CpG-ODNs was dependent on peripheral blood mononuclear cells since mobilization was reduced in neutrophil-depleted mice. Moreover, CpG-ODN treatment significantly increased G-CSF mobilizing capacity. Finally, pretreatment with an anti-mKC neutralizing antibody significantly reduced CpG-induced mobilization, further supporting a role for mKC. Thus, bacterial DNA is a "danger signal" not only for immune cells but also for hematopoietic cells, communicating the need for increased hematopoiesis during infections and for the renewal of the immune system. The HPC mobilization activity of CpG-ODNs will need to be considered in the design of treatment regimens for cancer clinical trials using CpG-ODNs in association with chemotherapy.  相似文献   
137.
138.
The exposure to a static magnetic field of 80+/-20 Gauss (8+/-2 mT) resulted in the inhibition of Serratia marcescens growth. Callus cell suspensions from Hordeum vulgare and Rubus fruticosus were also examined and only the former was found to be affected by the magnetic field, which induced a decreased viability. S. marcescens was shown to be virulent only toward H. vulgare and this virulence was reduced by the presence of the magnetic field. The modification of glutathione peroxidase activity under the different experimental conditions allowed us to speculate on the possibility of an oxidative-stress response of H. vulgare both to S. marcescens infection and magnetic field exposure. Since the control of microbial growth by physical agents is of interest for agriculture, medicine and food sciences, the investigation presented herein could serve as a starting point for future studies on the efficacy of static magnetic field as low-cost/easy-handling preservative agent.  相似文献   
139.
The stimulation of H+ extrusion by hyper-osmotic stress (0.2–0.3 M mannitol) in cultured cells of Arabidopsis thaliana (L.) Heynh. was shown to be associated with an inhibition of Cl? efflux, whereas hypo-osmotic stress, inhibiting H+ extrusion, early and strongly stimulated Cl? efflux. In this paper, we investigate the contribution of other factors [K+ transport and transmembrane electric potential difference (Em)] to the hyper-osmotic-induced activation of the plasma membrane (PM) H+-ATPase. The effects of mannitol (MA) on K+ transport and on Em were compared with those of fusicoccin (FC) since the modes of action of osmotica and of the toxin in stimulating H+-ATPase activity seem to differ at least in some steps. The changes in H+ extrusion induced by hyper- or hypo-osmotic stress were opposite and could be reversed by the application of the respective opposite stress. The effect of MA on H+ extrusion was dependent on the presence of K+ (or Rb+) similarly to that of FC, while Na+ and Li+, which also stimulated the FC effect, were ineffective on that of MA. The MA effect was independent of the anions (Cl?, SO42?, NO3?) accompanying K+. K+ net uptake and K+ influx were stimulated by both MA and FC. Tetraethylammonium (TEA+) and Cs+ inhibited both MA- and FC-induced H+ extrusion, suggesting the involvement of K+ channels. MA (0.2 M) induced a strong hyperpolarization of Em both in the absence and in the presence of K+. The hyperpolarizing effect of MA was also found when the cells were already hyperpolarized by FC, and was rapidly reversed by removing the osmoticum from the medium. In the presence of the lipophilic cation tributylbenzylammonium (TBBA+), MA was no longer able to stimulate H+ extrusion, while FC still stimulated it. In cells pretreated with TBBA+, which strongly depolarized Em, the subsequent addition of FC repolarized it, while the hyperpolarizing effect of MA was lacking. On the contrary, in cells pretreated with Erythrosine B (EB), Em was strongly depolarized and the following addition of FC did not hyperpolarize it, while the hyperpolarizing effect of MA was still observed. These results suggest that the mechanism of MA in activating H+ extrusion and K+ uptake is different from that of FC. The rise in net K+ uptake seems to be driven by the activation of some hyperpolarizing system that does not seem to depend on a direct activation of PM H+-ATPase, but rather on the inhibition of Cl? efflux induced by hyper-osmotic stress.  相似文献   
140.
Abstract The mechanism of antifungal activity of lactoferrin (Lf) and ovotransferrin (OTR) towards Candida albicans and Candida krusei was studied. In low iron-content medium, in minimal medium supplemented by 2,2'-dipyridyl, and in a medium in which Lf or OTR were separated from the culture by a dialysis membrane, the growth of C. albicans and C. krusei was proportional to the endogenous iron. Differences were observed when Lf or OTR was in contact with the fungal cells: C. albicans was inhibited, whereas C. krusei was not. Direct fluorescence indicated binding of Lf and OTR only on C. albicans surfaces, and suggested that antifungal activity is not simply related to iron deprivation, but involves interaction of the protein with the fungal surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号