首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   15篇
  220篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   11篇
  2014年   10篇
  2013年   13篇
  2012年   5篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   13篇
  2007年   10篇
  2006年   9篇
  2005年   12篇
  2004年   15篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   8篇
  1999年   7篇
  1998年   9篇
  1997年   1篇
  1996年   4篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
41.
Energy-dependent proteolysis is lost during maturation of rabbit reticulocytes to erythrocytes (Speiser, S., and Etlinger, J.D. (1982) J. Biol Chem. 257, 14122-14127), but nothing is known about the fates of individual components in the multienzyme ATP- and ubiquitin (Ub)-dependent proteolytic pathway during this process. Rabbit reticulocytes contain five low molecular weight carrier proteins (E2s) that form labile Ub adducts in the presence of Ub-activating enzyme (E1) (Pickart, C. M. and Rose, I. A. (1985) J. Biol. Chem. 260, 1573-1581). A method to estimate levels of active E2s in erythroid cells has been developed involving: 1) stepwise anion exchange fractionation of a soluble lysate; 2) addition of purified E1, MgATP, and radioiodinated Ub to the fractions followed by gel electrophoresis of the resulting E2-Ub adducts; and 3) quantitative densitometry of autoradiographs. Levels of active E2s are much lower in (rabbit) erythrocytes than in reticulocytes. Mean -fold decreases are: E235K, 6 x; E2(25K), 11 x; E2(20K), 18 x; E2(17K), not detected in erythrocytes; E2(14K), 12 x. The large decreases in levels of E2(20K) and E2(14K) are consistent with known functions of these proteins in DNA repair and Ub-dependent proteolysis, respectively. Decreases in levels of the other E2s, whose biological roles are presently unknown, suggest diminished requirements, if any, for them in erythrocyte metabolism. The analysis revealed two previously undescribed carrier proteins, one of which has a high molecular weight. Additional catalytic properties of E2(35K) and E2(14K) are reported.  相似文献   
42.

Background

Host genetics has been shown to play a role in porcine reproductive and respiratory syndrome (PRRS), which is the most economically important disease in the swine industry. A region on Sus scrofa chromosome (SSC) 4 has been previously reported to have a strong association with serum viremia and weight gain in pigs experimentally infected with the PRRS virus (PRRSV). The objective here was to identify haplotypes associated with the favorable phenotype, investigate additional genomic regions associated with host response to PRRSV, and to determine the predictive ability of genomic estimated breeding values (GEBV) based on the SSC4 region and based on the rest of the genome. Phenotypic data and 60 K SNP genotypes from eight trials of ~200 pigs from different commercial crosses were used to address these objectives.

Results

Across the eight trials, heritability estimates were 0.44 and 0.29 for viral load (VL, area under the curve of log-transformed serum viremia from 0 to 21 days post infection) and weight gain to 42 days post infection (WG), respectively. Genomic regions associated with VL were identified on chromosomes 4, X, and 1. Genomic regions associated with WG were identified on chromosomes 4, 5, and 7. Apart from the SSC4 region, the regions associated with these two traits each explained less than 3% of the genetic variance. Due to the strong linkage disequilibrium in the SSC4 region, only 19 unique haplotypes were identified across all populations, of which four were associated with the favorable phenotype. Through cross-validation, accuracies of EBV based on the SSC4 region were high (0.55), while the rest of the genome had little predictive ability across populations (0.09).

Conclusions

Traits associated with response to PRRSV infection in growing pigs are largely controlled by genomic regions with relatively small effects, with the exception of SSC4. Accuracies of EBV based on the SSC4 region were high compared to the rest of the genome. These results show that selection for the SSC4 region could potentially reduce the effects of PRRS in growing pigs, ultimately reducing the economic impact of this disease.  相似文献   
43.
Target protein multi-ubiquitination involving lysine 48 of ubiquitin (Ub) is known to occur during protein degradation in the ATP- and Ub-dependent proteolytic pathway (Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K., and Varshavsky, A. (1989) Science 243, 1576-1583). However, little is known about the enzymatic mechanism of multi-ubiquitination. We show that a purified Ub carrier protein, E2(25)K, catalyzes multi-Ub chain synthesis from purified Ub. Incubation of E2(25)K with Ub activating enzyme (E1), MgATP, and radiolabeled Ub (Mr = 8500) resulted in time dependent appearance of a "ladder" of radiolabeled Ub conjugates with molecular masses of 8.5n kDa, where n = 1, 2, 3, 4... (up to at least n = 10). The kinetics of this conjugative process were consistent with Ub2 acting as a steady-state intermediate. The putative Ub2 product of E2(25)K catalysis was purified and cleaved with a partially purified isopeptidase preparation. The sole cleavage product (Mr = 8500) had a tryptic digest identical to that of authentic Ub, confirming that the original conjugate was Ub2. Tryptic digestion of intact Ub2 gave products consistent with the existence of an isopeptide linkage between the COOH terminus of one Ub and Lys-48 of the other; this structure was confirmed by sequence analysis of the unique Ub2 tryptic fragment. Tryptic digestion of higher order Ubn adducts (n greater than or equal to 4) yielded fragments identical to those of Ub2, indicating that E2(25)K ligates successive Ub molecules primarily or exclusively via Lys-48. Although several other E2s supported synthesis of an apparent Ub2 adduct of undetermined linkage, only E2(25)K was capable of synthesizing multi-Ub chains from isolated Ub. Quantitative analysis of single turnovers showed that transfer from E2(25)K-Ub to Ub and Ub2 occurred with kappa 2 = 488 and 1170 M-1 min-1, respectively, at pH 7.3 and 37 degrees C. These results show that increasing the number of Ub molecules in a chain increases susceptibility to further ubiquitination by E2(25)K. Ub2 was a good substrate for activation by E1 and was readily transferred to E2(25)K. The labile E2(25)K-Ub2 adduct was catalytically active, and exhibited preference for Ub2 (versus Ub) as acceptor. These results suggest that E2(25)K may function as a multi-ubiquitinating enzyme in the Ub-dependent proteolytic pathway.  相似文献   
44.
Covalent ligation of multiubiquitin chains targets eukaryotic proteins for degradation. In such multiubiquitin chains, successive ubiquitins are linked by an isopeptide bond involving the side chain of Lys48 and the carboxyl group of Gly76. The crystal structure of a diubiquitin conjugate has been determined and refined at 2.3-A resolution. The molecule has internal approximate 2-fold symmetry with multiple hydrophobic and hydrophilic contacts along the 2-fold axis. The structure of the diubiquitin conjugate suggests determinants for recognition of multiubiquitin chains. A model for the interaction of diubiquitin and a ubiquitin conjugating enzyme (E2) is proposed.  相似文献   
45.
The sea urchin embryo is a closed metabolic system in which embryogenesis is accompanied by significant protein degradation. We report results which are consistent with a function for the ubiquitinmediated proteolytic pathway in selective protein degradation during embryogenesis in this system. Quantitative solid- and solution-phase immunochemical assays, employing anti-ubiquitin antibodies, showed that unfertilized eggs of Strongylocentrotus purpuratus have a high content of unconjugated ubiquitin ( ca . 8 × 108 molecules), and also contain abundant conjugates involving ubiquitin and maternal proteins. The absolute content of ubiquitin in the conjugated form increases about 13-fold between fertilization and the pluteus larva stage; 90% or more of embryonic ubiquitin molecules are conjugated to embryonic proteins in hatched blastulae and later-stage embryos. Qualitatively similar results were obtained with embryos of Lytechinus variegatus . The results of pulse-labeling and immunoprecipitation experiments indicate that synthesis of ubiquitin in S. purpuratus is developmentally regulated, with an overall increase in synthetic rate of 12-fold between fertilization and hatching. Regulation is likely to occur at the level of translation, since others have shown that levels of ubiquitin-encoding mRNA remain virtually constant in echinoid embryos during this developmental interval. The sea urchin embryo should be a useful system for characterizing the role of ubiquitination in embryogenesis.  相似文献   
46.
Regulators of complement activation (RCA) inhibit complement‐induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i–iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b‐binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease‐related mutations and immune evasion.  相似文献   
47.
48.
A synthetic peptide with a structure analogous to a growth promoting human serum tripeptide was found to possess activities which, at nanomolar concentrations, increased the survival of normal hepatocytes from regenerating rat liver and which enhanced growth of a line of cultured hepatoma cells. The synthetic tripeptide (glycyl-histidyl-lysine) also stimulated the incorporation of labeled uridine and thymidine into trichloroacetic acid precipitable material.  相似文献   
49.
Energetics of the calcium-transporting ATPase   总被引:11,自引:0,他引:11  
A thermodynamic cycle for catalysis of calcium transport by the sarcoplasmic reticulum ATPase is described, based on equilibrium constants for the microscopic steps of the reaction shown in Equation 1 under a single set of experimental (formula; see text) conditions (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4): KCa = 5.9 X 10(-12) M2, K alpha ATP = 15 microM, Kint = 0.47, K alpha ADP = 0.73 mM, K'int = 1.7, K"Ca = 2.2 X 10(-6) M2, and Kp = 37 mM. The value of K"Ca was calculated by difference, from the free energy of hydrolysis of ATP. The spontaneous formation of an acylphosphate from Pi and E is made possible by the expression of 12.5 kcal mol-1 of noncovalent binding energy in E-P. Only 1.9 kcal mol-1 of binding energy is expressed in E X Pi. There is a mutual destabilization of bound phosphate and calcium in E-P X Ca2, with delta GD = 7.6 kcal mol-1, that permits transfer of phosphate to ADP and transfer of calcium to a concentrated calcium pool inside the vesicle. It is suggested that the ordered kinetic mechanism for the dissociation of E-P X Ca2, with phosphate transfer to ADP before calcium dissociation outside and phosphate transfer to water after calcium dissociation inside, preserves the Gibbs energies of these ligands and makes a major contribution to the coupling in the transport process. A lag (approximately 5 ms) before the appearance of E-P after mixing E and Pi at pH 6 is diminished by ATP and by increased [Pi]. This suggests that ATP accelerates the binding of Pi. The weak inhibition by ATP of E-P formation at equilibrium also suggests that ATP and phosphate can bind simultaneously to the enzyme at pH 6. Rate constants are greater than or equal to 115 s-1 for all the steps in the reaction sequence to form E-32P X Ca2 from E-P, Ca2+ and [32P]ATP at pH 7. E-P X Ca2 decomposes with kappa = 17 s-1, which shows that it is a kinetically competent intermediate. The value of kappa decreases to 4 s-1 if the intermediate is formed in the presence of 2 mM Ca2+. This decrease and inhibition of turnover by greater than 0.1 mM Ca2+ may result from slow decomposition of E-P X Ca3.  相似文献   
50.
Ubiquitinated derivatives of histones H2A and H2B, in which the carboxyl terminus of ubiquitin is joined to epsilon-amino groups of specific lysine residues of each histone, occur in vivo. Certain ubiquitin carrier proteins (E2s) catalyze ubiquitin transfer to histones (Pickart, C. M., and Rose, I. A. (1985) J. Biol. Chem. 260, 1573-1581). The catalytic activities of these purified ubiquitin carrier proteins have been quantitatively characterized with purified histones, in order to determine if one or more of them exhibits specificity for H2A over other histones (H3,H4) which are not known to be ubiquitinated in vivo. The results show the following. 1) No E2 exhibits strong specificity for H2A over the other histones. 2) For a given histone, kinetics of formation of its monoubiquitinated adduct do not differ strongly among the E2s; sigmoid kinetics (nH = 2) are generally observed, with values of K 0.5 ranging from 2-6 microM. 3) E214K catalyzes primarily monoubiquitination. 4) E220K catalyzes multiple ubiquitination (up to three ubiquitin/histone) by a processive mechanism that involves joining of ubiquitin carboxyl termini to multiple histone lysine residues. 5) E235K also catalyzes processive ubiquitination, with formation of polyubiquitinated products exhibiting a lag phase. Many of the polyubiquitinated adducts produced at low histone concentration are larger than expected for monoubiquitination of every histone-lysine residue, and polyubiquitination is selectively inhibited by substitution of reductively methylated ubiquitin for ubiquitin. These results suggest that E235K uniquely catalyzes ubiquitin transfer to lysine residues of previously conjugated ubiquitin molecule(s). The implications of these results for biological mechanisms of histone ubiquitination are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号