首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   9篇
  2022年   1篇
  2021年   3篇
  2019年   1篇
  2018年   5篇
  2017年   6篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   6篇
  2012年   8篇
  2011年   5篇
  2010年   9篇
  2009年   7篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2004年   5篇
  2003年   4篇
  2002年   6篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1991年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有105条查询结果,搜索用时 31 毫秒
71.
Here we demonstrated that the ‘loss of function’ of not‐rearranged c‐ABL in chronic myeloid leukemia (CML) is promoted by its cytoplasmic compartmentalization bound to 14‐3‐3 sigma scaffolding protein. In particular, constitutive tyrosine kinase (TK) activity of p210 BCR‐ABL blocks c‐Jun N‐terminal kinase (JNK) phosphorylation leading to 14‐3‐3 sigma phosphorylation at a critical residue (Ser186) for c‐ABL binding in response to DNA damage. Moreover, it is associated with 14‐3‐3 sigma over‐expression arising from epigenetic mechanisms (promoter hyper‐acetylation). Accordingly, p210 BCR‐ABL TK inhibition by the TK inhibitor Imatinib mesylate (IM) evokes multiple events, including JNK phosphorylation at Thr183, p38 mitogen‐activated protein kinase (MAPK) phosphorylation at Thr180, c‐ABL de‐phosphorylation at Ser residues involved in 14‐3‐3 binding and reduction of 14‐3‐3 sigma expression, that let c‐ABL release from 14‐3‐3 sigma and nuclear import, and address BCR‐ABL‐expressing cells towards apoptotic death. Informational spectrum method (ISM), a virtual spectroscopy method for analysis of protein interactions based on their structure, and mathematical filtering in cross spectrum (CS) analysis identified 14‐3‐3 sigma/c‐ABL binding sites. Further investigation on CS profiles of c‐ABL‐ and p210 BCR‐ABL‐containing complexes revealed the mechanism likely involved 14‐3‐3 precluded phosphorylation in CML cells.  相似文献   
72.
Human T lymphocytes cultured in vitro for 5 days with C. albicans purified polysaccharide (MPPS) and with purified protein derivative (PPD) from M. tuberculosis produce an antigen nonspecific inhibitory factor(s) (nsINH). nsINH blocks antigen-driven cell proliferation and the development of natural killer cells (NK) when added at the beginning of peripheral blood mononuclear cell culture. Analysis of the mechanism of action shows that nsINH inhibits the production of interleukin 2 (IL-2), the expression of IL-2 receptor (Tac antigen), and the synthesis of immune interferon (IFN). The biochemical characterization of nsINH shows that the suppressive activity is acid (pH 2.5) and temperature (56 degrees C) resistant. Gel filtration analysis indicates a molecular weight of 30-35K and 60-65K. These results suggest a role for nsINH in the down regulation of the lymphokine cascade.  相似文献   
73.
The action of glucocorticoids on the proliferative response of human lymphocytes stimulated in vitro by MPPS has been investigated. The effect of Dex was dependent on the time of steroid addition to the cultures. Dex added at the beginning of the culture period inhibited, cell proliferation and IL 1/IL 2 synthesis, although not completely. However, a delayed addition of 24 to 48 hr resulted in an enhancing effect on cell proliferative responses that was maximal at day 4. The effect of Dex on T suppressor cell activity was then investigated. Dex added 1 day before the appearance of suppressor cells resulted in a marked decrease or disappearance of the suppressive activity. Moreover, primed T lymphocytes treated with Dex in the presence of exogenous IL 2 enhanced the proliferative responses of fresh autologous PBMC stimulated by MPPS. Taken together, our data suggest that glucocorticoids inhibit the differentiation of T suppressor cells and that IL 2 is unable to reverse this inhibitory effect.  相似文献   
74.
ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required.  相似文献   
75.
In various human viral infections, the appearance of mutated epitopes displaying TCR antagonistic activity has been correlated with the severity and persistence of infection. In hepatitis C virus (HCV) infection, where the virus persistence has been associated with the rapid and substantial Ag modifications occurring during replication, TCR antagonism has been evidenced in CD8+ T cell responses. However, CD4+ T cell antagonism may be another important strategy by which HCV eludes a protective response, because sustained Th responses directed against several HCV Ags are associated with a self-limited course of infection. The data reported here represent the first evidence that variants of the hypervariable region (HVR1) of the putative Envelope 2 protein of HCV can act as powerful TCR antagonists for HVR1-specific CD4+ T cells isolated from HCV-infected individuals. Using classical antagonism assays, we observed strong inhibition of cellular proliferation and cytokine production when the agonist and the antagonist ligands were simultaneously presented by the same APCs. The presence in HVR1 of conserved residues, critical for binding to HLA-DR molecules, supports the function of HVR1 variants as TCR antagonists. In conclusion, our data evidence an antagonism phenomenon, which was achieved by naturally occurring class II-restricted T cell epitopes whose mechanism was addressed in terms of the antagonist capacity to inhibit agonist-mediated TCR down-regulation and early signal transduction.  相似文献   
76.
Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300–350 µmol m?2 s?1 photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900–2000 µmol m?2 s?1). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ‐aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1‐pyrroline‐5‐carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.  相似文献   
77.
78.
The amounts of free sphingosine in Epstein Barr virus transformed B lymphocytes (EBV-B) treated with sphingosine and phorbol-12,13-dibutyrate (PD) has been quantified by high performance liquid chromatography (HPLC). PD treatment did not affect intracellular sphingosine level, while it seems to lessen the removal of this long chain base in sphingosine-treated EBV-B cells. The previous results relative to sphingosine-dependent changes in choline-metabolite levels have to be interpreted on the basis of these results.  相似文献   
79.
Pancreatic ductal adenocarcinoma (PDAC) contains a subset of exclusively tumorigenic cancer stem cells (CSCs) which have been shown to drive tumor initiation, metastasis and resistance to radio- and chemotherapy. Here we describe a specific methodology for culturing primary human pancreatic CSCs as tumor spheres in anchorage-independent conditions. Cells are grown in serum-free, non-adherent conditions in order to enrich for CSCs while their more differentiated progenies do not survive and proliferate during the initial phase following seeding of single cells. This assay can be used to estimate the percentage of CSCs present in a population of tumor cells. Both size (which can range from 35 to 250 micrometers) and number of tumor spheres formed represents CSC activity harbored in either bulk populations of cultured cancer cells or freshly harvested and digested tumors 1,2. Using this assay, we recently found that metformin selectively ablates pancreatic CSCs; a finding that was subsequently further corroborated by demonstrating diminished expression of pluripotency-associated genes/surface markers and reduced in vivo tumorigenicity of metformin-treated cells. As the final step for preclinical development we treated mice bearing established tumors with metformin and found significantly prolonged survival. Clinical studies testing the use of metformin in patients with PDAC are currently underway (e.g., NCT01210911, NCT01167738, and NCT01488552). Mechanistically, we found that metformin induces a fatal energy crisis in CSCs by enhancing reactive oxygen species (ROS) production and reducing mitochondrial transmembrane potential. In contrast, non-CSCs were not eliminated by metformin treatment, but rather underwent reversible cell cycle arrest. Therefore, our study serves as a successful example for the potential of in vitro sphere formation as a screening tool to identify compounds that potentially target CSCs, but this technique will require further in vitro and in vivo validation to eliminate false discoveries.  相似文献   
80.
CD157, a member of the CD38 gene family, is an NAD-metabolizing ectoenzyme and a signaling molecule whose role in polarization, migration, and diapedesis of human granulocytes has been documented; however, the molecular events underpinning this role remain to be elucidated. This study focused on the role exerted by CD157 in monocyte migration across the endothelial lining and adhesion to extracellular matrix proteins. The results demonstrated that anti-CD157 antibodies block monocyte transmigration and adhesion to fibronectin and fibrinogen but that CD157 cross-linking is sufficient to overcome the block, suggesting an active signaling role for the molecule. Consistent with this is the observation that CD157 is prevalently located within the detergent-resistant membrane microdomains to which, upon clustering, it promotes the recruitment of β(1) and β(2) integrin, which, in turn, leads to the formation of a multimolecular complex favoring signal transduction. This functional cross-talk with integrins allows CD157 to act as a receptor despite its intrinsic structural inability to do so on its own. Intracellular signals mediated by CD157 rely on the integrin/Src/FAK (focal adhesion kinase) pathway, resulting in increased activity of the MAPK/ERK1/2 and the PI3K/Akt downstream signaling pathways, which are crucial in the control of monocyte transendothelial migration. Collectively, these findings indicate that CD157 acts as a molecular organizer of signaling-competent membrane microdomains and that it forms part of a larger molecular machine ruled by integrins. The CD157-integrin partnership provides optimal adhesion and transmigration of human monocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号