首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2893篇
  免费   256篇
  3149篇
  2023年   11篇
  2022年   35篇
  2021年   68篇
  2020年   32篇
  2019年   47篇
  2018年   82篇
  2017年   57篇
  2016年   91篇
  2015年   154篇
  2014年   156篇
  2013年   211篇
  2012年   277篇
  2011年   247篇
  2010年   183篇
  2009年   146篇
  2008年   203篇
  2007年   181篇
  2006年   173篇
  2005年   154篇
  2004年   129篇
  2003年   110篇
  2002年   102篇
  2001年   30篇
  2000年   22篇
  1999年   29篇
  1998年   29篇
  1997年   18篇
  1996年   12篇
  1995年   12篇
  1994年   11篇
  1993年   14篇
  1992年   14篇
  1991年   11篇
  1990年   12篇
  1989年   16篇
  1988年   9篇
  1987年   8篇
  1986年   3篇
  1985年   5篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1981年   2篇
  1976年   3篇
  1975年   3篇
  1973年   2篇
  1969年   2篇
  1967年   4篇
  1966年   2篇
  1964年   4篇
排序方式: 共有3149条查询结果,搜索用时 15 毫秒
51.
52.
The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity.  相似文献   
53.

Background

0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ∼200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure.

Aims

The aim of this work was to test the biophysically-based hypothesis that ∼200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues.

Methods

A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue.

Results

We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp.

Conclusions

As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug-resistant origin.  相似文献   
54.
Noma (cancrum oris) is a gangrenous disease of unknown etiology affecting the maxillo-facial region of young children in extremely limited resource countries. In an attempt to better understand the microbiological events occurring during this disease, we used phylogenetic and low-density microarrays targeting the 16S rRNA gene to characterize the gingival flora of acute noma and acute necrotizing gingivitis (ANG) lesions, and compared them to healthy control subjects of the same geographical and social background. Our observations raise doubts about Fusobacterium necrophorum, a previously suspected causative agent of noma, as this species was not associated with noma lesions. Various oral pathogens were more abundant in noma lesions, notably Atopobium spp., Prevotella intermedia, Peptostreptococcus spp., Streptococcus pyogenes and Streptococcus anginosus. On the other hand, pathogens associated with periodontal diseases such as Aggregatibacter actinomycetemcomitans, Capnocytophaga spp., Porphyromonas spp. and Fusobacteriales were more abundant in healthy controls. Importantly, the overall loss of bacterial diversity observed in noma samples as well as its homology to that of ANG microbiota supports the hypothesis that ANG might be the immediate step preceding noma.  相似文献   
55.
The mediators of the DNA damage response (DDR) are highly phosphorylated by kinases that control cell proliferation, but little is known about the role of this regulation. Here we show that cell cycle phosphorylation of the prototypical DDR mediator Saccharomyces cerevisiae Rad9 depends on cyclin-dependent kinase (CDK) complexes. We find that a specific G2/M form of Cdc28 can phosphorylate in vitro the N-terminal region of Rad9 on nine consensus CDK phosphorylation sites. We show that the integrity of CDK consensus sites and the activity of Cdc28 are required for both the activation of the Chk1 checkpoint kinase and its interaction with Rad9. We have identified T125 and T143 as important residues in Rad9 for this Rad9/Chk1 interaction. Phosphorylation of T143 is the most important feature promoting Rad9/Chk1 interaction, while the much more abundant phosphorylation of the neighbouring T125 residue impedes the Rad9/Chk1 interaction. We suggest a novel model for Chk1 activation where Cdc28 regulates the constitutive interaction of Rad9 and Chk1. The Rad9/Chk1 complex is then recruited at sites of DNA damage where activation of Chk1 requires additional DDR–specific protein kinases.  相似文献   
56.
Freezers in research institutions often contain a plethora of samples left over from studies performed years or even decades ago. Along with samples stored in biobanks, these could prove to be treasure troves for metabonomic research. Although the influence of sample handling and short to medium term storage on conventionally determined blood parameters has been reported, little is known about the effects of long term storage (years to decades) on plasma samples. The aim of this study was to investigate the influence of long term storage on the metabolite profile and to assess the value of archived samples for metabonomic studies. Heparinised plasma of 22 heifers that had been stored at ?20 °C for between 2 and 15 years was analysed using NMR spectroscopy and statistical analysis techniques. Lactate (principal component 1) explained 79.6 % of variance between all spectra, but was not correlated with storage time. The highest correlation with storage time (R 2 = 0.474) was found for betaine, with other metabolites (acetoacetate, histidines, glycerol, lipids and glucose) also showing moderate correlation (R 2 values between 0.217 and 0.437). Our results indicate that samples stored for extended periods of time can potentially be used in metabonomics studies, if precautions are taken during data analysis.  相似文献   
57.
Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-AS cell line causes α-synuclein aggregate-dependent toxicity. In this study, we investigated whether the FAS system is involved in α-synuclein aggregate dependent degeneration in oligodendrocytes and may play a role in multiple system atrophy. Using rat oligodendroglial OLN-t40-AS cells we demonstrate that the cytotoxicity caused by coexpressing α-synuclein and p25α relies on stimulation of the death domain receptor FAS and caspase-8 activation. Using primary oligodendrocytes derived from PLP-α-synuclein transgenic mice we demonstrate that they exist in a sensitized state expressing pro-apoptotic FAS receptor, which makes them sensitive to FAS ligand-mediated apoptosis. Immunoblot analysis shows an increase in FAS in brain extracts from multiple system atrophy cases. Immunohistochemical analysis demonstrated enhanced FAS expression in multiple system atrophy brains notably in oligodendrocytes harboring the earliest stages of glial cytoplasmic inclusion formation. Oligodendroglial FAS expression is an early hallmark of oligodendroglial pathology in multiple system atrophy that mechanistically may be coupled to α-synuclein dependent degeneration and thus represent a potential target for protective intervention.  相似文献   
58.
Pathological and imaging data indicate that amyotrophic lateral sclerosis (ALS) is a multisystem disease involving several cerebral cortical areas. Advanced quantitative magnetic resonance imaging (MRI) techniques enable to explore in vivo the volume and microstructure of the cerebral cortex in ALS. We studied with a combined voxel-based morphometry (VBM) and magnetization transfer (MT) imaging approach the capability of MRI to identify the cortical areas affected by neurodegeneration in ALS patients. Eighteen ALS patients and 18 age-matched healthy controls were examined on a 1.5T scanner using a high-resolution 3D T1 weighted spoiled gradient recalled sequence with and without MT saturation pulse. A voxel-based analysis (VBA) was adopted in order to automatically compute the regional atrophy and MT ratio (MTr) changes of the entire cerebral cortex. By using a multimodal image analysis MTr was adjusted for local gray matter (GM) atrophy to investigate if MTr changes can be independent of atrophy of the cerebral cortex. VBA revealed several clusters of combined GM atrophy and MTr decrease in motor-related areas and extra-motor frontotemporal cortex. The multimodal image analysis identified areas of isolated MTr decrease in premotor and extra-motor frontotemporal areas. VBM and MTr are capable to detect the distribution of neurodegenerative alterations in the cortical GM of ALS patients, supporting the hypothesis of a multi-systemic involvement in ALS. MT imaging changes exist beyond volume loss in frontotemporal cortices.  相似文献   
59.
Recently matrix metalloproteinase-9 (MMP-9) and its endogenous inhibitor (tissue inhibitor of metalloproteinase-1, TIMP-1) have been implicated in complicated malaria. In vivo, mice with cerebral malaria (CM) display high levels of both MMP-9 and TIMP-1, and in human patients TIMP-1 serum levels directly correlate with disease severity. In vitro, natural haemozoin (nHZ, malarial pigment) enhances monocyte MMP-9 expression and release. The present study analyses the effects of nHZ on TIMP-1 regulation in human adherent monocytes. nHZ induced TIMP-1 mRNA expression and protein release, and promoted TNF-α, IL-1β, and MIP-1α/CCL3 production. Blocking antibodies or recombinant cytokines abrogated or mimicked nHZ effects on TIMP-1, respectively. p38 MAPK and NF-κB inhibitors blocked all nHZ effects on TIMP-1 and pro-inflammatory molecules. Still, total gelatinolytic activity was enhanced by nHZ despite TIMP-1 induction. Collectively, these data indicate that nHZ induces inflammation-mediated expression and release of human monocyte TIMP-1 through p38 MAPK- and NF-κB-dependent mechanisms. However, TIMP-1 induction is not sufficient to counterbalance nHZ-dependent MMP-9 enhancement. Future investigation on proteinase-independent functions of TIMP-1 (i.e. cell survival promotion and growth/differentiation inhibition) is needed to clarify the role of TIMP-1 in malaria pathogenesis.  相似文献   
60.
To date, very large scale sequencing of many clinically important RNA viruses has been complicated by their high population molecular variation, which creates challenges for polymerase chain reaction and sequencing primer design. Many RNA viruses are also difficult or currently not possible to culture, severely limiting the amount and purity of available starting material. Here, we describe a simple, novel, high-throughput approach to Norovirus and Hepatitis C virus whole genome sequence determination based on RNA shotgun sequencing (also known as RNA-Seq). We demonstrate the effectiveness of this method by sequencing three Norovirus samples from faeces and two Hepatitis C virus samples from blood, on an Illumina MiSeq benchtop sequencer. More than 97% of reference genomes were recovered. Compared with Sanger sequencing, our method had no nucleotide differences in 14,019 nucleotides (nt) for Noroviruses (from a total of 2 Norovirus genomes obtained with Sanger sequencing), and 8 variants in 9,542 nt for Hepatitis C virus (1 variant per 1,193 nt). The three Norovirus samples had 2, 3, and 2 distinct positions called as heterozygous, while the two Hepatitis C virus samples had 117 and 131 positions called as heterozygous. To confirm that our sample and library preparation could be scaled to true high-throughput, we prepared and sequenced an additional 77 Norovirus samples in a single batch on an Illumina HiSeq 2000 sequencer, recovering >90% of the reference genome in all but one sample. No discrepancies were observed across 118,757 nt compared between Sanger and our custom RNA-Seq method in 16 samples. By generating viral genomic sequences that are not biased by primer-specific amplification or enrichment, this method offers the prospect of large-scale, affordable studies of RNA viruses which could be adapted to routine diagnostic laboratory workflows in the near future, with the potential to directly characterize within-host viral diversity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号