首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2098篇
  免费   167篇
  国内免费   1篇
  2266篇
  2022年   15篇
  2021年   30篇
  2020年   16篇
  2019年   16篇
  2018年   36篇
  2017年   25篇
  2016年   56篇
  2015年   99篇
  2014年   120篇
  2013年   120篇
  2012年   138篇
  2011年   119篇
  2010年   96篇
  2009年   74篇
  2008年   117篇
  2007年   83篇
  2006年   87篇
  2005年   92篇
  2004年   92篇
  2003年   76篇
  2002年   93篇
  2001年   46篇
  2000年   41篇
  1999年   33篇
  1998年   25篇
  1997年   12篇
  1996年   16篇
  1995年   13篇
  1994年   19篇
  1993年   12篇
  1992年   37篇
  1991年   29篇
  1990年   15篇
  1989年   21篇
  1988年   26篇
  1987年   19篇
  1986年   26篇
  1985年   22篇
  1984年   15篇
  1983年   12篇
  1981年   10篇
  1980年   15篇
  1979年   17篇
  1978年   16篇
  1977年   17篇
  1976年   13篇
  1975年   21篇
  1974年   12篇
  1973年   15篇
  1972年   17篇
排序方式: 共有2266条查询结果,搜索用时 0 毫秒
121.
The mature, functional sieve-tube system in higher plants is dependent upon protein import from the companion cells to maintain a functional long-distance transport system. Soluble proteins present within the sieve-tube lumen were investigated by analysis of sieve-tube exudates which revealed the presence of distinct sets of polypeptides in seven monocotyledonous and dicotyledonous plant species. Antibodies directed against sieve-tube exudate proteins from Ricinus communis L. demonstrated the presence of shared antigens in the phloem sap collected from Triticum aestivum L., Oryza sativa L., Yucca filamentosa L., Cucurbita maxima Duch., Robinia pseudoacacia L. and Tilia platyphyllos L. Specific antibodies were employed to identify major polypeptides. Molecular chaperones related to Rubisco-subunit-binding protein and cyclophilin, as well as ubiquitin and the redox proteins, thioredoxin h and glutaredoxin, were detected in the sieve-tube exudate of all species examined. Actin and profilin, a modulator of actin polymerization, were also present in all analyzed phloem exudates. However, some proteins were highly species-specific, e.g. cystatin, a protease-inhibitor was present in R. communis but was not detected in exudates from other species, and orthologs of the well-known squash phloem lectin, phloem protein 2, were only identified in the sieve-tube exudate of R. communis and R. pseudoacacia. These findings are discussed in terms of the likely roles played by phloem proteins in the maintenance and function of the enucleate sieve-tube system of higher plants. Received: 12 February 1998 / Accepted: 16 March 1998  相似文献   
122.
A cDNA encoding the multifunctional cytochrome P450, CYP71E1, involved in the biosynthesis of the cyanogenic glucoside dhurrin from Sorghum bicolor (L.) Moench was isolated. A PCR approach based on three consensus sequences of A-type cytochromes P450 – (V/I)KEX(L/F)R, FXPERF, and PFGXGRRXCXG – was applied. Three novel cytochromes P450 (CYP71E1, CYP98, and CYP99) in addition to a PCR fragment encoding sorghum cinnamic acid 4-hydroxylase were obtained.Reconstitution experiments with recombinant CYP71E1 heterologously expressed in Escherichia coli and sorghum NADPH–cytochrome P450–reductase in L--dilaurylphosphatidyl choline micelles identified CYP71E1 as the cytochrome P450 that catalyses the conversion of p-hydroxyphenylacetaldoxime to p-hydroxymandelonitrile in dhurrin biosynthesis. In accordance to the proposed pathway for dhurrin biosynthesis CYP71E1 catalyses the dehydration of the oxime to the corresponding nitrile, followed by a C-hydroxylation of the nitrile to produce p-hydroxymandelonitrile. In vivo administration of oxime to E. coli cells results in the accumulation of the nitrile, which indicates that the flavodoxin/flavodoxin reductase system in E. coli is only able to support CYP71E1 in the dehydration reaction, and not in the subsequent C-hydroxylation reaction.CYP79 catalyses the conversion of tyrosine to p-hydroxyphenylacetaldoxime, the first committed step in the biosynthesis of the cyanogenic glucoside dhurrin. Reconstitution of both CYP79 and CYP71E1 in combination with sorghum NADPH-cytochrome P450–reductase resulted in the conversion of tyrosine to p-hydroxymandelonitrile, i.e. the membranous part of the biosynthetic pathway of the cyanogenic glucoside dhurrin. Isolation of the cDNA for CYP71E1 together with the previously isolated cDNA for CYP79 provide important tools necessary for tissue-specific regulation of cyanogenic glucoside levels in plants to optimize food safety and pest resistance.  相似文献   
123.
124.
125.
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.  相似文献   
126.
Glycoproteins in cerebrospinal fluid (CSF) are altered in Alzheimer's Disease (AD) patients compared to control individuals. We have utilized albumin depletion prior to 2D gel electrophoresis to enhance glycoprotein concentration for image analysis as well as structural glycoprotein determination without glycan release using mass spectrometry (MS). The benefits of a direct glycoprotein analysis approach include minimal sample manipulation and retention of structural details. A quantitative comparison of gel-separated glycoprotein isoforms from twelve AD patients and twelve control subjects was performed with glycoprotein-specific and total protein stains. We have also compared glycoforms in pooled CSF obtained from AD patients and control subjects with mass spectrometry. One isoform of alpha1-antitrypsin showed decreased glycosylation in AD patients while another glycosylated isoform of an unassigned protein was up-regulated. Protein expression levels of alpha1-antitrypsin were decreased, while the protein levels of apolipoprotein E and clusterin were increased in AD. No specific glycoform could be specifically assigned to AD.  相似文献   
127.
BACKGROUND: Medulloblastoma is the most frequent primary solid central nervous system tumour in children. The 5-year survival rate is at present at about 60%. Height in general is severely compromised in survivors. The present study is an extension of the investigation by the author's group of the effect of exogenous growth hormone (GH) among medulloblastoma patients. METHODS: A total of 113 patients with medulloblastoma (out of 682 cases documented in KIGS, Pfizer International Growth Database) were treated with GH till final height was achieved. At the start of GH therapy (median dose 0.18 mg/kg/week), patients were 8.9 years old and had a median height SDS of -1.6. RESULTS: After 6.8 years of GH, final height SDS was -1.9, reflecting an overall loss in height of 0.3 SDS. This contrasted with an age-matched group of patients with idiopathic growth hormone deficiency (iGHD, n = 1,986), whose gain in height was 1.6 SDS on the same dose. The index of responsiveness averaged -0.9 during the first prepubertal year and -2.0 during total pubertal growth, thus indicating a major impairment in responsiveness to GH as compared to iGHD. Height at GH start, which correlated positively with the age at disease onset, was found to be the major determinant of final height. CONCLUSIONS: Our findings show that attempts to improve the height outcome in medulloblastoma must involve earlier recognition and treatment with higher-than-replacement doses of GH; additionally, modifications in cancer treatment programs need to be considered, such as lowering the dose of craniospinal irradiation or avoiding it as far as possible.  相似文献   
128.
The collagen-platelet interaction is central to haemostasis and may be a critical determinant of arterial thrombosis, where subendothelium is exposed after rupture of atherosclerotic plaque. Recent research has capitalized on the cloning of an important signalling receptor for collagen, glycoprotein VI, which is expressed only on platelets, and on the use of collagen-mimetic peptides as specific tools for both glycoprotein VI and integrin alpha 2 beta 1. We have identified sequences, GPO and GFOGER (where O denotes hydroxyproline), within collagen that are recognized by the collagen receptors glycoprotein VI and integrin alpha 2 beta 1 respectively, allowing their signalling properties and specific functional roles to be examined. Triple-helical peptides containing these sequences were used to show the signalling potential of integrin alpha 2 beta 1, and to confirm its important contribution to platelet adhesion. Glycoprotein VI appears to operate functionally on the platelet surface as a dimer, which recognizes GPO motifs that are separated by four triplets of collagen sequence. These advances will allow the relationship between the structure of collagen and its haemostatic activity to be established.  相似文献   
129.
The underlying biochemical consequences of inflammatory bowel disease (IBD) on the systemic and gastrointestinal metabolism have not yet been fully elucidated but could help to better understand the disease pathogenesis and to identify tissue-specific markers associated with the different disease stages. Here, we applied a metabonomic approach to monitor metabolic events associated with the gradual development of Crohn's disease (CD)-like ileitis in the TNF(ΔARE/WT) mouse model. Metabolic profiles of different intestinal compartments from the age of 4 up to 24 weeks were generated by combining proton nuclear magnetic resonance ((1)H NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS). From 8 weeks onward, mice developed CD similar to the immune and tissue-related phenotype of human CD with ileal involvement, including ileal histological abnormalities, reduced fat mass and body weight, as well as hallmarks of malabsorption with higher energy wasting. The metabonomic approach highlighted shifts in the intestinal lipid metabolism concomitant to the histological onset of inflammation. Moreover, the advanced disease status was characterized by a significantly altered metabolism of cholesterol, triglycerides, phospholipids, plasmalogens, and sphingomyelins in the inflamed tissue (ileum) and the adjacent intestinal parts (proximal colon). These results describe different biological processes associated with the disease onset, including modifications of the general cell membrane composition, alteration of energy homeostasis, and finally the generation of inflammatory lipid mediators. Taken together, this provides novel insights into IBD-related alterations of specific lipid-dependant processes during inflammatory states.  相似文献   
130.
The binding of Shiga toxin isolated from the bacterium Shigella dysenteriae type 1 to a series of glycolipids and to cells or cell homogenates has been studied. Bound toxin was detected using either 125I-labeled toxin or specific monoclonal antibody and 125I-labeled anti-antibody. Overlay of toxin on thin-layer chromatograms with separated glycolipids and binding to glycolipids coated in microtiter wells established that the toxin specifically bound to Gal alpha 1-4Gal beta (galabiose) placed terminally or internally in the oligosaccharide chain. No glycolipid shown to lack this sequence binds the toxin. Most of the glycolipids with internally placed galabiose were not active, indicating a sterical hindrance for toxin access to the binding epitope. Binding of toxin to HeLa cells in monolayers could be inhibited by preincubation of the toxin with galabiose covalently linked to bovine serum albumin (BSA), but not with free oligosaccharides containing galabiose or with lactose coupled to BSA. This demonstrated that the inhibition is specifically dependent on galabiose and requires multivalency of the disaccharide to be efficient. The inhibitory effect was successively enhanced by increasing the substitution on BSA (7, 18, and 25 mol of galabiose/mol of BSA). The BSA-coupled galabiose could also prevent the cytotoxic effect on HeLa cells (detachment of killed cells). There are cell lines with a dense number of receptor sites, but which are resistant to toxin action (uptake and inhibition of protein synthesis) which may suggest two types of receptor substances which are functionally different and unevenly expressed. In analogy with the mechanism earlier formulated for cholera toxin, we propose glycolipid-bound, bilayer-close galabiose as the functional receptor for membrane penetration of the toxin, while galabiose bound in glycoproteins affords binding sites but is not able to mediate penetration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号