首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1296篇
  免费   87篇
  国内免费   1篇
  1384篇
  2023年   9篇
  2022年   14篇
  2021年   29篇
  2020年   12篇
  2019年   11篇
  2018年   30篇
  2017年   16篇
  2016年   42篇
  2015年   80篇
  2014年   97篇
  2013年   88篇
  2012年   112篇
  2011年   86篇
  2010年   77篇
  2009年   53篇
  2008年   85篇
  2007年   54篇
  2006年   66篇
  2005年   67篇
  2004年   70篇
  2003年   56篇
  2002年   63篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   17篇
  1997年   9篇
  1996年   9篇
  1995年   9篇
  1994年   15篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1969年   2篇
  1966年   2篇
  1931年   1篇
  1929年   1篇
  1924年   2篇
  1922年   2篇
排序方式: 共有1384条查询结果,搜索用时 15 毫秒
991.
Genome-wide association studies pinpointed common variants in or near the MTNR1B gene encoding MT2 melatonin receptor to be strongly associated with fasting glucose levels. IRS2 gene polymorphisms impact insulin resistance and epicardial fat (EF) thickness, which in turn is correlated with visceral adiposity, cognitive ability and risk for metabolic plus cardiovascular disease. We aimed to discover the interactions between MTNR1B and IRS2 gene polymorphisms, insulin sensitivity, EF thickness and cognitive performance in the elderly. In 60 subjects aged 60 years and older, we evaluated five single nucleotide polymorphisms (SNPs) within the MTNR1B locus (rs10830962, rs4753426, rs12804291, rs10830963, rs3781638), the Gly1057Asp variant of IRS2 gene (rs1805097), biochemical parameters, cognitive performance by the Mini Mental State Examination (MMSE) and EF thickness by transthoracic echocardiography. We found that MTNR1B and IRS2 gene variants impacted EF thickness, lipid profile and glucose homeostasis. IRS2 but not MTNR1B variants impacted MMSE scores. In conclusion, MTNR1B SNPs interact with IRS2 gene variant, correlate with the amount of epicardial adipose tissue and impact glucose homeostasis and lipid profile influencing cardiometabolic risk.  相似文献   
992.
Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful quantitative proteomics platform for comprehensive characterization of complex biological systems. However, the potential of SILAC-based approaches has not been fully utilized in human embryonic stem cell (hESC) research mainly because of the complex nature of hESC culture conditions. Here we describe complete SILAC labeling of hESCs with fully preserved pluripotency, self-renewal capabilities, and overall proteome status that was quantitatively analyzed to a depth of 1556 proteins and 527 phosphorylation events. SILAC-labeled hESCs appear to be perfectly suitable for functional studies, and we exploited a SILAC-based proteomics strategy for discovery of hESC-specific surface markers. We determined and quantitatively compared the membrane proteomes of the self-renewing versus differentiating cells of two distinct human embryonic stem cell lines. Of the 811 identified membrane proteins, six displayed significantly higher expression levels in the undifferentiated state compared with differentiating cells. This group includes the established marker CD133/Prominin-1 as well as novel candidates for hESC surface markers: Glypican-4, Neuroligin-4, ErbB2, receptor-type tyrosine-protein phosphatase ζ (PTPRZ), and Glycoprotein M6B. Our study also revealed 17 potential markers of hESC differentiation as their corresponding protein expression levels displayed a dramatic increase in differentiated embryonic stem cell populations.Human embryonic stem cells (hESCs)1 are stem cells derived from the blastocyst inner cell mass. They are pluripotent; thus they are able to differentiate into any human cell type. The self-renewal capacity and pluripotency make hESCs an ideal system to study the processes of cell development and differentiation. Moreover hESC research is highly relevant for regenerative medicine, which aims at replacing or restoring tissue damaged by disease or injury through transplantation of functional hESCs (1,2). However, factors responsible for maintaining the undifferentiated and pluripotent nature of hESCs are still largely unknown. Before hESCs can be used for transplantation into the human body, reliable and reproducible protocols for differentiating them into specific cell types are needed. To create such protocols we need to develop a thorough understanding of the mechanisms maintaining the undifferentiated pluripotent nature of hESCs and those guiding their differentiation into specific lineages.A number of factors involved in the maintenance of pluripotency have been described over the last few years (3). It has also been demonstrated that overexpression of some of these factors in somatic cells is sufficient to turn them into pluripotent stem cells very similar to hESCs (48). However, it is apparent that the processes occurring during such transformation are extremely complex. A large number of factors and pathways are involved in maintaining the pluripotent state and regulating self-renewal and differentiation. The process of specific hESC differentiation into distinct cell types is even less understood. Most current attempts to directionally differentiate hESCs are based on sequential application of empirically selected growth factors and consequent selection for markers expressed in the target cell types (9). A more systematic approach is needed to improve our understanding of the pathways that control the conversion of precursors into specific cell types, progressing toward the goal of reproducing these processes in vitro for the generation of functional cells and tissues for transplantation.Comprehensive quantitative analysis of the hESC proteome would mean an important advance in understanding the nature of “stemness,” pluripotency, and differentiation. Several studies targeting various aspects of the hESC proteome have already been reported (for reviews, see Refs. 10 and 11). The task, however, is so enormous that further detailed analysis and novel strategies are necessary and will be of high interest and importance. In this regard, MS-based quantitative proteomics and in particular stable isotope labeling by amino acids in cell culture (SILAC) may greatly facilitate the process of defining the mechanisms of hESC self-renewal and differentiation. With SILAC, the entire proteome of a given cell population is metabolically labeled by heavy, non-radioactive isotopic variants of amino acids, thus making it distinguishable by MS analysis (12). Thereafter two or more distinctly SILAC-labeled cell populations can be mixed and analyzed in one MS experiment that allows accurate quantitation of proteins from the different cellular states (13). This versatile strategy has been demonstrated to be very useful for comprehensive characterization of complex biological phenomena (1421) including in-depth comparison of signaling pathways to identify control points determining cell fate of adult mesenchymal stem cells (22).Here we report a procedure for complete SILAC labeling of human ES cells. We show that these SILAC-encoded hESCs have preserved self-renewing undifferentiated status as well as pluripotent capabilities based on analysis of known markers. In addition, we further compared the overall proteomes and phosphoproteomes of SILAC-labeled hESCs and equivalent cells grown under conventional culture conditions. We next compared the membrane proteomes of undifferentiated and differentiated hESCs in a quantitative manner. Our analysis identified 811 membrane proteins, which to our knowledge is the largest data set of ES cell membrane proteome. This study also revealed 23 membrane proteins with large changes in their expression levels during the differentiation. Six of those cell surface molecules displayed more than 3-fold higher levels in the self-renewing cells, whereas the remaining 17 were identified as more abundant in the differentiated population. These may be useful as specific hESC markers for the corresponding ES cell state and help to shed light on the mechanisms for self-renewal and differentiation.  相似文献   
993.

Introduction

In systemic sclerosis (SSc) little evidence for the effectiveness of anti-inflammatory and immunosuppressive therapy exists. The objective of this study was to determine the extent to which SSc patients are treated with corticosteroids and immunosuppressive agents.

Methods

Data on duration and dosage of corticosteroids and on the type of immunosuppressive agent were analyzed from 1,729 patients who were registered in the German Network for Systemic Scleroderma (DNSS).

Results

A total 41.3% of all registered SSc patients was treated with corticosteroids. Corticosteroid use was reported in 49.1% of patients with diffuse cutaneous SSc and 31.3% of patients with limited cutaneous SSc (P < 0.0001). Among patients with overlap disease characteristics, 63.5% received corticosteroids (P < 0.0001 vs. limited cutaneous SSc). A total 16.1% of the patients received corticosteroids with a daily dose ≥ 15 mg prednisone equivalent. Immunosuppressive therapy was prescribed in 35.8% of patients. Again, among those patients with overlap symptoms, a much higher proportion (64.1%) was treated with immunosuppressive agents, compared with 46.4% of those with diffuse cutaneous SSc sclerosis and 22.2% of those with limited cutaneous SSc (P < 0.0001). The most commonly prescribed drugs were methotrexate (30.5%), cyclophosphamide (22.2%), azathioprine (21.8%) and (hydroxy)chloroquine (7.2%). The use of these compounds varied significantly between medical subspecialties.

Conclusions

Despite limited evidence for the effectiveness of corticosteroids and immunosuppressive agents in SSc, these potentially harmful drugs are frequently prescribed to patients with all forms of SSc. Therefore, this study indicates the need to develop and communicate adequate treatment recommendations.  相似文献   
994.

Background  

Gene expression analyses based on complex hybridization measurements have increased rapidly in recent years and have given rise to a huge amount of bioinformatic tools such as image analyses and cluster analyses. However, the amount of work done to integrate and evaluate these tools and the corresponding experimental procedures is not high. Although complex hybridization experiments are based on a data production pipeline that incorporates a significant amount of error parameters, the evaluation of these parameters has not been studied yet in sufficient detail.  相似文献   
995.
Bacteria living in the oligotrophic open ocean have various ways to survive under the pressure of nutrient limitation. Copepods, an abundant portion of the mesozooplankton, release nutrients through excretion and sloppy feeding that can support growth of surrounding bacteria. We conducted incubation experiments in the North Atlantic Subtropical Gyre to investigate the response of bacterial communities in the presence of copepods. Bacterial community composition and abundance measurements indicate that copepods have the potential to influence the microbial communities surrounding and associating with them – their ‘zoosphere’, in two ways. First, copepods may attract and support the growth of copiotrophic bacteria including representatives of Vibrionaceae, Oceanospirillales and Rhodobacteraceae in waters surrounding them. Second, copepods appear to grow specific groups of bacteria in or on the copepod body, particularly Flavobacteriaceae and Pseudoalteromonadaceae, effectively ‘farming’ them and subsequently releasing them. These distinct mechanisms provide a new view into how copepods may shape microbial communities in the open ocean. Microbial processes in the copepod zoosphere may influence estimates of oceanic bacterial biomass and in part control bacterial community composition and distribution in seawater.  相似文献   
996.
Cofactor recycling is known to be crucial for amino acid synthesis. Hence, cofactor supply was now analyzed for L ‐valine to identify new targets for an improvement of production. The central carbon metabolism was analyzed by stoichiometric modeling to estimate the influence of cofactors and to quantify the theoretical yield of L ‐valine on glucose. Three different optimal routes for L ‐valine biosynthesis were identified by elementary mode (EM) analysis. The modes differed mainly in the manner of NADPH regeneration, substantiating that the cofactor supply may be crucial for efficient L ‐valine production. Although the isocitrate dehydrogenase as an NADPH source within the tricarboxylic acid cycle only enables an L ‐valine yield of YVal/Glc = 0.5 mol L ‐valine/mol glucose (mol Val/mol Glc), the pentose phosphate pathway seems to be the most promising NADPH source. Based on the theoretical calculation of EMs, the gene encoding phosphoglucoisomerase (PGI) was deleted to achieve this EM with a theoretical yield YVal/Glc = 0.86 mol Val/mol Glc during the production phase. The intracellular NADPH concentration was significantly increased in the PGI‐deficient mutant. L ‐Valine yield increased from 0.49 ± 0.13 to 0.67 ± 0.03 mol Val/mol Glc, and, concomitantly, the formation of by‐products such as pyruvate was reduced. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
997.
998.
SAR explorations of the eastern and western parts of recently disclosed 2-aminoquinoline MCH1R-antagonists are reported. Eastern part investigations confirmed a high degree of structural freedom, and a number of additional single digit nanomolar antagonists were identified. Investigations of the western part also confirmed the initial SAR analysis, requiring a para-substituted phenyl ring spaced from the 6-amide by two connecting atoms. The exploration led to the discovery of a novel sub-series with a 4-biphenylcarboxamide western part, also exhibiting single digit nanomolar affinity.  相似文献   
999.
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson’s disease.  相似文献   
1000.
Homologous recombination is triggered by nucleolytic degradation (resection) of DNA double‐strand breaks (DSBs). DSB resection requires the Mre11‐Rad50‐Xrs2 (MRX) complex, which promotes the activity of Exo1 nuclease through a poorly understood mechanism. Here, we describe the Mre11‐R10T mutant variant that accelerates DSB resection compared to wild‐type Mre11 by potentiating Exo1‐mediated processing. This increased Exo1 resection activity leads to a decreased association of the Ku complex to DSBs and an enhanced DSB resection in G1, indicating that Exo1 has a direct function in preventing Ku association with DSBs. Molecular dynamics simulations show that rotation of the Mre11 capping domains is able to induce unwinding of double‐strand DNA (dsDNA). The R10T substitution causes altered orientation of the Mre11 capping domain that leads to persistent melting of the dsDNA end. We propose that MRX creates a specific DNA end structure that promotes Exo1 resection activity by facilitating the persistence of this nuclease on the DSB ends, uncovering a novel MRX function in DSB resection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号