首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1296篇
  免费   87篇
  国内免费   1篇
  2023年   6篇
  2022年   13篇
  2021年   29篇
  2020年   12篇
  2019年   11篇
  2018年   30篇
  2017年   16篇
  2016年   42篇
  2015年   80篇
  2014年   97篇
  2013年   88篇
  2012年   112篇
  2011年   86篇
  2010年   77篇
  2009年   54篇
  2008年   86篇
  2007年   55篇
  2006年   67篇
  2005年   68篇
  2004年   70篇
  2003年   56篇
  2002年   63篇
  2001年   12篇
  2000年   7篇
  1999年   10篇
  1998年   17篇
  1997年   9篇
  1996年   9篇
  1995年   9篇
  1994年   15篇
  1993年   6篇
  1992年   9篇
  1991年   8篇
  1990年   2篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1980年   2篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1969年   2篇
  1966年   2篇
  1931年   1篇
  1929年   1篇
  1924年   2篇
  1922年   2篇
排序方式: 共有1384条查询结果,搜索用时 515 毫秒
81.
82.
Serum thyrotropin (TSH), free thyroxine (T4), and free triiodothyronine (T3) levels illustrate the thyroid function set point, but the interrelations between these have never been characterized in detail. The aim of this study was to examine the associations between TSH and thyroid hormone levels in healthy euthyroid twins and to determine the extent to which the same genes influence more than one of these biochemical traits; 1,380 healthy euthyroid Danish twins (284 monozygotic, 286 dizygotic, 120 opposite-sex twin pairs) were recruited. Genetic and environmental associations between thyroid function measurements were examined using quantitative genetic modeling. In bivariate genetic models, the phenotypic relation between two measurements was divided into genetic and environmental correlations. Free T4 and free T3 levels were positively correlated (r=0.32, P<0.0001). The genetic correlation between serum free T4 and free T3 levels was rg=0.25 (95% CI 0.14-0.35), suggesting that a set of common genes affect both phenotypes (pleiotropy). The correlation between the environmental effects was re=0.41 (0.32-0.50). From this we calculated that the proportion of the correlation between free T4 and free T3 levels mediated by common genetic factors was 48%. Only 7% of the genetic component of serum free T3 levels is shared with serum free T4. Serum TSH and thyroid hormone levels did not share any genetic influences. In conclusion, thyroid hormone levels are partly genetically correlated genes that affect free T4 levels and exert pleiotropic effects on free T3 levels, although most of the genetic variance for these measurements is trait specific.  相似文献   
83.
Illegally paid blood donation was a risk factor for HIV acquisition exclusively in Henan and Hubei Provinces of China,and not in Shanghai.Nucleotide sequences in the gag and env genes of HIV-1 were compared between isolates from Henan and Shanghai regions of China to test whether an expected higher degree of a common source of infections from this unique blood donation transmission risk would be evident as decreased variation among Henan isolates in an exploratory cross-sectional analysis.Among 38 isolates studied,23 of 23(100%)from Henan and 8 of 15(54%)from Shanghai were subtype B.In addition,fewer sequence differences were found in gp41 of subtype B isolates from Henan than from Shanghai isolates.Further studies with additional controls are therefore warranted to confirm the role of the degree of a common source of infections in differences in HIV variation across populations.  相似文献   
84.
85.
86.
87.
88.
Homologous recombination requires nucleolytic degradation (resection) of DNA double‐strand break (DSB) ends. In Saccharomyces cerevisiae, the MRX complex and Sae2 are involved in the onset of DSB resection, whereas extensive resection requires Exo1 and the concerted action of Dna2 and Sgs1. Here, we show that the checkpoint protein Rad9 limits the action of Sgs1/Dna2 in DSB resection by inhibiting Sgs1 binding/persistence at the DSB ends. When inhibition by Rad9 is abolished by the Sgs1‐ss mutant variant or by deletion of RAD9, the requirement for Sae2 and functional MRX in DSB resection is reduced. These results provide new insights into how early and long‐range resection is coordinated.  相似文献   
89.
Glycoengineering is increasingly being recognized as a powerful tool to generate recombinant glycoproteins with a customized N-glycosylation pattern. Here, we demonstrate the modulation of the plant glycosylation pathway toward the formation of human-type bisected and branched complex N-glycans. Glycoengineered Nicotiana benthamiana lacking plant-specific N-glycosylation (i.e. β1,2-xylose and core α1,3-fucose) was used to transiently express human erythropoietin (hEPO) and human transferrin (hTF) together with modified versions of human β1,4-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnTIII), α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnTIV) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnTV). hEPO was expressed as a fusion to the IgG-Fc domain (EPO-Fc) and purified via protein A affinity chromatography. Recombinant hTF was isolated from the intracellular fluid of infiltrated plant leaves. Mass spectrometry-based N-glycan analysis of hEPO and hTF revealed the quantitative formation of bisected (GnGnbi) and tri- as well as tetraantennary complex N-glycans (Gn[GnGn], [GnGn]Gn and [GnGn][GnGn]). Co-expression of GnTIII together with GnTIV and GnTV resulted in the efficient generation of bisected tetraantennary complex N-glycans. Our results show the generation of recombinant proteins with human-type N-glycosylation at great uniformity. The strategy described here provides a robust and straightforward method for producing mammalian-type N-linked glycans of defined structures on recombinant glycoproteins, which can advance glycoprotein research and accelerate the development of protein-based therapeutics.  相似文献   
90.
The development of primary cultures and cell lines from aquatic organisms is a valuable tool for a wide range of research activities applied to aquaculture. Despite several efforts, derivation and long-term culturing of primary hepatocytes from marine vertebrates are still rare and unsuccessful. This is the first report to fully characterize long-term cultures of primary hepatocytes from the European seabream, Sparus aurata L. (Osteichthyes, Sparidae) (SaHePs). In this new model, hepatocyte cells were long-term viable, active proliferating, and fully retained liver function up to 3 weeks. SaHePs expressed a differentiated phenotype, owing to the reacquisition of the peculiar cytoarchitecture with the complete assembly of cytoskeletal and junctional network, as shown by the production and immunolocalization of several polarity markers and cytoskeletal proteins (MDR1, ZO-2, C-CAM1, Vimentin, Cadherin, ??-Tubulin, ??-Catenin, ??-Actin). Cytostructural analysis to identify polarized expression and bile canaliculi formation was performed by immunofluorescence and contrast phase microscopy. Long cultured SaHePs also demonstrated evidence of Albumin, ??1-Antitrypsin (AAT) and ??-Fetoprotein (AFP) synthesis, expression of the detoxifying metabolic enzyme cytochrome P-4501A (CYP 1A), and production of hepatocyte specific cytoskeleton proteins, such as Cytokeratin 8 (CK8) and Cytokeratin 18 (CK 18). The presence of specific markers for hepatic phenotype, detected by immunocytochemistry and Western blot analysis, is suggestive of the full maintenance of a highly differentiated phenotype and hepatic maturation. These data demonstrate that SaHePs can be long cultured without losing the hepatic functionality. This study provides a useful tool for innovative research applications in fish toxicological, pathological, and physiological studies, as one of the few hepatic, functionally active, in vitro model from marine fish.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号