首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111865篇
  免费   2145篇
  国内免费   1426篇
  2023年   116篇
  2022年   281篇
  2021年   471篇
  2020年   321篇
  2019年   413篇
  2018年   12193篇
  2017年   10941篇
  2016年   7972篇
  2015年   1538篇
  2014年   1327篇
  2013年   1533篇
  2012年   5616篇
  2011年   14115篇
  2010年   12819篇
  2009年   8892篇
  2008年   10705篇
  2007年   12214篇
  2006年   1135篇
  2005年   1313篇
  2004年   1688篇
  2003年   1713篇
  2002年   1410篇
  2001年   803篇
  2000年   644篇
  1999年   473篇
  1998年   224篇
  1997年   224篇
  1996年   195篇
  1995年   167篇
  1994年   157篇
  1993年   150篇
  1992年   265篇
  1991年   281篇
  1990年   210篇
  1989年   223篇
  1988年   206篇
  1987年   165篇
  1986年   144篇
  1985年   168篇
  1984年   130篇
  1983年   115篇
  1982年   92篇
  1981年   97篇
  1979年   109篇
  1978年   91篇
  1975年   93篇
  1974年   89篇
  1973年   81篇
  1972年   301篇
  1971年   332篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Epithelial-mesenchymal-transition (EMT) is a key event for tumor cells to initiate metastasis which lead to switching of E-cadherin to N-cadherin. Resolvins are known to promote the resolution of inflammation and phagocytosis of macrophages. However, the role of resolvins in EMT of cancer is not known. Therefore, we examined the effects of resolvins on transforming growth factor, beta 1 (TGF-β1)-induced EMT. Expression of E-cadherin and N-cadherin in A549 lung cancer cells was evaluated by Western blot and confocal microscopy. Involvement of lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2) was examined by gene silencing. TGF-β1 induced expression of N-cadherin in A549 lung cancer cells, and resolvin D1 and D2 inhibited the expression of N-cadherin at low concentrations (1–100 nM). Resolvin D1 and D2 also suppressed the expression of zinc finger E-box binding homeobox 1 (ZEB1). The effects of resolvin D1 and D2 were confirmed in other lung cancer cell lines such as H838, H1299, and H1703. Resolvin D1 and D2 did not affect the proliferation of A549 lung cancer cells. Resolvin D1 and D2 also suppressed the TGF-β1-induced morphological change. Resolvin D1 and D2 also inhibited the TGF-β1-induced migration and invasion of A549 cells. Resolvin D1 is known to act via ALX/FPR2 and GPR32. Thus, we examined the involvement of ALX/FPR2 and GPR32 in the suppressive effects of resolvin D1 on TGF-β1-induced EMT of A549 cells. Gene silencing of ALX/FPR2 and GPR32 blocked the action of resolvin D1. Overexpression of ALX/FPR2 or GPR32 increased the effects of resolvin D1. These results suggest that resolvin D1 inhibited TGF-β1-induced EMT via ALX/FPR2 and GPR32 by reducing the expression of ZEB1.  相似文献   
972.
The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An 18F-labeled DPAZn2 complex (4-18F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), 18F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of 18F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2′-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[18F]-fluorobenzoate (18F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of 18F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of 18F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of 18F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that 18F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of 18F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.  相似文献   
973.
974.
In cell culture, medium supplemented with fetal bovine serum is commonly used, and it is widely known that fetal bovine serum supplies an adequate environment for culture and differentiation of stem cells. Nevertheless, the use of xenogeneic serum can cause several problems. We compared the effects of four different concentrations of autologous serum (1, 2, 5, and 10 %) on expansion and adipogenic differentiation of adipose-derived stem cells using 10 % fetal bovine serum as a control. The stem cells were grafted on nude mice and the in vivo differentiation capacity was evaluated. The isolation of adipose-derived stem cells was successful irrespective of the culture medium. The proliferation potential was statistically significant at passage 2, as follows: 10 % autologous serum >10 % fetal bovine serum = 5 % autologous serum >2 % autologous serum = 1 % autologous serum. The differentiation capacity appeared statistically significant at passage 4, as follows: 10 % fetal bovine serum >10 % autologous serum = 5 % autologous serum >2 % autologous serum = 1 % autologous serum. Ten percent autologous serum and 10 % fetal bovine serum had greater differentiation capacity than 1 and 2 % autologous serum in vivo, and no significant difference was observed between the groups at ≥5 % concentration at 14 weeks. In conclusion, 10 % autologous serum was at least as effective as 10 % fetal bovine serum with respect to the number of adipose-derived stem cells at the end of both isolation and expansion, whereas 1 and 2 % autologous serum was inferior.  相似文献   
975.
CYP57B3 from Aspergillus oryzae was recently discovered to catalyze the ortho-hydroxylation of the soyisoflavone genistein. In the present study, the gene encoding CYP57B3 was fused with the reductase domain of the CYP102A1 gene (BM3R) from Bacillus megaterium, and recombinant Pichia pastoris harboring the P450 fusion gene was evaluated for its ability to produce ortho-hydroxydaidzein derivatives from daidzein. The results showed that 8-hydroxydaidzein (8-OHDe), 3′-hydroxydaidzein (3′-OHDe), and 6-hydroxydaidzein (6-OHDe) were produced during fermentation with a maximal conversion of 2.4, 0.9, and 36.3%, respectively. The maximal yield of 6-OHDe by the recombinant strain was 9.1 mg/l. To our knowledge, both the maximal yield and the conversion efficiency of 6-OHDe from daidzein in the present study are the highest among those reported in the literatures to date. The present study is also the first to demonstrate production of ortho-hydroxydaidzein derivatives using a fusion fungus cytochrome P450 enzyme.  相似文献   
976.
Melanaphis sacchari causes serious damage to sorghum (Sorghum bicolor (L.) Moench) growth, development and productivity in many countries. A dominant gene (RMES1) conferring resistance to M. sacchari has been found in the grain sorghum variety Henong 16 (HN16), but fine mapping of the RMES1 locus remains to be reported. In this study, genetic populations segregating for RMES1 were prepared with HN16 and BTx623 as parental lines. The latter had been used for sorghum genome sequencing but was found to be susceptible to M. sacchari in this work. A total of 11 molecular markers were mapped to the short arm of chromosome 6 harboring RMES1. The closest markers flanking the RMES1 locus were Sb6m2650 and Sb6rj2776, which delimited a chromosomal region of about 126 kb containing five predicted genes. The utility of the newly identified DNA markers for tagging RMES1 in molecular breeding of M. sacchari resistance, and further efforts in cloning RMES1, are discussed.  相似文献   
977.
978.
In order to understand the molecular basis of high nitrogen use efficiency of finger millet, five genes (EcHNRT2, EcLNRT1, EcNADH-NR, EcGS, and EcFd-GOGAT) involved in nitrate uptake and assimilation were isolated using conserved primer approaches. Expression profiles of these five genes along with the previously isolated EcDof1 was studied under increased KNO3 concentrations (0.15 to 1,500 μM) for 2 h as well as at 1.5 μM for 24 h in the roots and shoots of 25 days old nitrogen deprived two contrasting finger millet genotypes (GE-3885 and GE-1437) differing in grain protein content (13.76 and 6.15 %, respectively). Time kinetics experiment revealed that, all the five genes except EcHNRT2 in the leaves of GE-3885 were induced within 30 min of nitrate exposure indicating that there might be a greater nitrogen deficit in leaves and therefore quick transportation of nitrate signals to the leaves. Exposing the plants to increasing nitrate concentrations for 2 h showed that in roots of GE-3885, NR was strongly induced while GS was repressed; however, the pattern was found to be reversed in leaves of GE-1437 indicating that in GE-3885, most of the nitrate might be reduced in the roots but assimilated in leaves and vice-versa. Furthermore, compared with the low-protein genotype, expression of HNRT2 was strongly induced in both roots and shoots of high-protein genotype at the least nitrate concentration supplied. This further indicates that GE-3885 is a quick sensor of nitrogen compared with the low-protein genotype. Furthermore, expression of EcDof1 was also found to overlap the expression of NR, GS, and GOGAT indicating that Dof1 probably regulates the expression of these genes under different conditions by sensing the nitrogen fluctuations around the root zone.  相似文献   
979.
The objective of this study was to study the effect of diabetic hyperglycemia on astrocytes after forebrain ischemia. Streptozotocin (STZ)-injected hyperglycemic and vehicle-injected normoglycemic rats were subjected to 15 minutes of forebrain ischemia. The brains were harvested in sham-operated controls and in animals with 1 and 6 h of recirculation following ischemia. Brain damage was accessed by haematoxylin and eosin (H&E) staining, cleaved caspase-3 immunohistochemistry and TdT-mediated-dUTP nick end labeling (TUNEL). Anti-GFAP antibody was employed to study astrocytes. The results showed that the 15-minute ischemia caused neuronal death after 1 and 6 h of reperfusion as revealed by increased numbers of karyopyknotic cells, edema, TUNEL-positive and active caspase-3-positive cells. Ischemia also activated astrocytes in the cingulated cortex as reflected by astrocyte stomata hypertrophy, elongated dendrites and increases in the number of dendrites, and immunoreactivity of GFAP. Diabetic hyperglycemia further enhanced neuronal death and suppressed ischemia-induced astrocyte activation. Further, diabetes-damaged astrocytes have increased withdrawal of the astrocyte end-foot from the cerebral blood vessel wall. It is concluded that diabetes-induced suppression and damages to astrocytes may contribute to its detrimental effects on recovery from cerebral ischemia.  相似文献   
980.
Biomanipulation has been employed in numerous locations throughout the world as a means for reducing phytoplankton biomass; however, it has not been employed very often in Japan. A common approach involves the introduction of piscivorous fish to reduce the abundance of planktivorous fish. In our study, to first apply biomanipulation, we stocked Lake Shirakaba (a high-altitude, protected area in a park) in central Japan with rainbow trout fingerlings and cladoceran Daphnia (Daphnia galeata) in 2000. A “pre-biomanipulation” data set (1997–1999) and “a post-biomanipulation” data set (2000–2006) allowed us to evaluate the lake's response to biomanipulation. After the biomanipulation, zoo-planktivorous pond smelt disappeared and a large population of Daphnia had been established, which substantially reduced the number of the previously dominant small cladocerans and rotifers. Water transparency increased from about 2 m (before biomanipulation) to more than 4 m (after biomanipulation). Reductions in algal biomass and increased transparency led to expansion of the submerged macrophyte Elodea nuttallii. Total phosphorus concentrations declined as well over this time period. Based on these results, we concluded that biomanipulation using piscivore and Daphnia stocking succeeded in improving lake water quality by reducing algal abundance and providing favorable conditions for the establishment of rooted plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号