首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111865篇
  免费   2145篇
  国内免费   1426篇
  2023年   116篇
  2022年   281篇
  2021年   471篇
  2020年   321篇
  2019年   413篇
  2018年   12193篇
  2017年   10941篇
  2016年   7972篇
  2015年   1538篇
  2014年   1327篇
  2013年   1533篇
  2012年   5616篇
  2011年   14115篇
  2010年   12819篇
  2009年   8892篇
  2008年   10705篇
  2007年   12214篇
  2006年   1135篇
  2005年   1313篇
  2004年   1688篇
  2003年   1713篇
  2002年   1410篇
  2001年   803篇
  2000年   644篇
  1999年   473篇
  1998年   224篇
  1997年   224篇
  1996年   195篇
  1995年   167篇
  1994年   157篇
  1993年   150篇
  1992年   265篇
  1991年   281篇
  1990年   210篇
  1989年   223篇
  1988年   206篇
  1987年   165篇
  1986年   144篇
  1985年   168篇
  1984年   130篇
  1983年   115篇
  1982年   92篇
  1981年   97篇
  1979年   109篇
  1978年   91篇
  1975年   93篇
  1974年   89篇
  1973年   81篇
  1972年   301篇
  1971年   332篇
排序方式: 共有10000条查询结果,搜索用时 276 毫秒
961.

Background

Membrane proteins perform essential roles in diverse cellular functions and are regarded as major pharmaceutical targets. The significance of membrane proteins has led to the developing dozens of resources related with membrane proteins. However, most of these resources are built for specific well-known membrane protein groups, making it difficult to find common and specific features of various membrane protein groups.

Methods

We collected human membrane proteins from the dispersed resources and predicted novel membrane protein candidates by using ortholog information and our membrane protein classifiers. The membrane proteins were classified according to the type of interaction with the membrane, subcellular localization, and molecular function. We also made new feature dataset to characterize the membrane proteins in various aspects including membrane protein topology, domain, biological process, disease, and drug. Moreover, protein structure and ICD-10-CM based integrated disease and drug information was newly included. To analyze the comprehensive information of membrane proteins, we implemented analysis tools to identify novel sequence and functional features of the classified membrane protein groups and to extract features from protein sequences.

Results

We constructed HMPAS with 28,509 collected known membrane proteins and 8,076 newly predicted candidates. This system provides integrated information of human membrane proteins individually and in groups organized by 45 subcellular locations and 1,401 molecular functions. As a case study, we identified associations between the membrane proteins and diseases and present that membrane proteins are promising targets for diseases related with nervous system and circulatory system. A web-based interface of this system was constructed to facilitate researchers not only to retrieve organized information of individual proteins but also to use the tools to analyze the membrane proteins.

Conclusions

HMPAS provides comprehensive information about human membrane proteins including specific features of certain membrane protein groups. In this system, user can acquire the information of individual proteins and specified groups focused on their conserved sequence features, involved cellular processes, and diseases. HMPAS may contribute as a valuable resource for the inference of novel cellular mechanisms and pharmaceutical targets associated with the human membrane proteins. HMPAS is freely available at http://fcode.kaist.ac.kr/hmpas.
  相似文献   
962.
NSAIDs are prescribed widely but have rare serious gastrointestinal side effects. More recently, adverse cardiovascular effects of these drugs have also been recognized, leading to the withdrawal of some agents and continuing uncertainty about the best approach for patients requiring NSAID therapy. Proton pump inhibitors (PPIs) provide potent and long-lasting inhibition of gastric acid secretion and have proven efficacy in healing NSAID-associated ulcers, including those with continued exposure to NSAIDs. PPIs have also shown efficacy in reducing the risk of ulcerations due to NSAID use compared with NSAIDs alone in randomized controlled trials (RCTs) where endoscopic ulcers are used as the primary endpoint, albeit a surrogate marker for clinical ulcers and complications. Large RCT outcome trials comparing patients exposed to NSAIDs with and without PPI co-therapy have not been performed, but adequately powered RCTs in high-risk patients demonstrate that PPI + nonselective NSAID provides similar rates of symptomatic ulcer recurrence rates as the use of a cyclooxygenase (COX)-2 selective inhibitor. A RCT in high-risk patients with previous ulcer complications supports the additive bene3 t of two risk-reducing strategies, as ulcer complication recurrence was eliminated in high-risk patients who were given a COX-2 selective agent with a PPI. Helicobacter pylori, an independent risk factor for ulcers, should be sought out and eradicated in patients at increased gastrointestinal risk, typically those with an ulcer history. Following H. pylori eradication, however, patients remain at risk and co-therapy with a PPI is recommended. NSAID medication selection should consider both the individual patients' gastrointestinal and cardiovascular risks.  相似文献   
963.
Pain affects the quality of life for millions of individuals and is a major reason for healthcare utilization. As populations age, medical personnel will need to manage more and more patients suffering from pain associated with degenerative and inflammatory musculoskeletal disorders. Nonsteroidal anti-inflammatory drugs (NSAIDs) are an effective treatment for both acute and chronic musculoskeletal pain; however, their use is associated with potentially significant gastrointestinal (GI) toxicity. Guidelines suggest various strategies to prevent problems in those at risk for NSAID-associated GI complications. In this article, we review the data supporting one such strategy - the use of histamine type-2 receptor antagonists (H2RAs) - for the prevention of GI adverse events in NSAID users. Older studies suggest that high-dose H2RAs are effective in preventing upper GI ulcers and dyspepsia. This suggestion was recently confirmed during clinical trials with a new ibuprofen/famotidine combination that reduced the risk of ulcers by 50% compared with ibuprofen alone.  相似文献   
964.
A novel 3′,4′-dimethyl-5′-norcarbocyclic adenosine phosphonic acid was prepared using acyclic stereoselective route from 4-hydroxybutan-2-one (4). To improve the cellular permeability and enhance the anti-HIV activity of this phosphonic acid, a (bis)SATE phosphonodiester nucleoside prodrug (20) was prepared and its chemical stability was evaluated. The newly synthesized bis(SATE) analogue (20) and its parent nucleoside phosphonic acid (18) were assayed for anti-HIV activity using an in vitro assay system in a CEM cell line.  相似文献   
965.
Abstract

Stable and water soluble amino acid phosphomonoester amidates of AZT were synthesized and shown to have potent anti-HIV-1 activity. Intracellular and cell extract metabolism studies revealed that these compounds are likely to be enzymatically converted to the corresponding monophosphates. In addition, we have shown that the half life and tissue distribution of a phosphoramidate of AZT is 5 and 10-fold greater, respectively, than AZT.  相似文献   
966.
Novel vinyl branched apiosyl nucleosides were synthesized in this study. Apiosyl sugar moiety was constructed by sequential ozonolysis and reductions. The bases (uracil and thymine) were efficiently coupled by glycosyl condensation procedure (persilyated base and TMSOTf). The antiviral activities of the synthesized compounds were evaluated against the HIV-1, HSV-1, HSV-2, and HCMV. Compound 10β displayed moderate anti-HIV activity (EC50 = 17.3 μg/mL) without exhibiting any cytotoxicity up to 100 μM.  相似文献   
967.
The current in-depth proteomics makes use of long chromatography gradient to get access to more peptides for protein identification, resulting in covering of as many as 8000 mammalian gene products in 3 days of mass spectrometer running time. Here we report a fast sequencing (Fast-seq) workflow of the use of dual reverse phase high performance liquid chromatography - mass spectrometry (HPLC-MS) with a short gradient to achieve the same proteome coverage in 0.5 day. We adapted this workflow to a quantitative version (Fast quantification, Fast-quan) that was compatible to large-scale protein quantification. We subjected two identical samples to the Fast-quan workflow, which allowed us to systematically evaluate different parameters that impact the sensitivity and accuracy of the workflow. Using the statistics of significant test, we unraveled the existence of substantial falsely quantified differential proteins and estimated correlation of false quantification rate and parameters that are applied in label-free quantification. We optimized the setting of parameters that may substantially minimize the rate of falsely quantified differential proteins, and further applied them on a real biological process. With improved efficiency and throughput, we expect that the Fast-seq/Fast-quan workflow, allowing pair wise comparison of two proteomes in 1 day may make MS available to the masses and impact biomedical research in a positive way.The performance of mass spectrometry has been improved tremendously over the last few years (13), making mass spectrometry-based proteomics a viable approach for large-scale protein analysis in biological research. Scientists around the world are striving to fulfill the promise of identifying and quantifying almost all gene products expressed in a cell line or tissue. This would make mass spectrometry-based protein analysis an approach that is compatible to the second-generation mRNA deep-seq technique (4, 5).Two liquid chromatography (LC)-MS strategies have been employed to achieve deep proteome coverage. One is a single run with a long chromatography column and gradient to take advantage of the resolving power of HPLC to reduce the complexity of peptide mixtures; the other is a sequential run with two-dimensional separation (typically ion-exchange and reverse phase) to reduce peptide complexity. It was reported by two laboratories that 2761 and 4500 proteins were identified with a 10 h chromatography gradient on a dual pressure linear ion-trap orbitrap mass spectrometer (LTQ Orbitrap Velos)(68). Similarly, 3734 proteins were identified using a 8 h gradient on a 2 m long column with a hybrid triple quadrupole - time of flight (Q-TOF, AB sciex 5600 Q-TOF)(9) mass spectrometer. The two-dimensional approach has yielded more identification with longer time. For example, 10,006 proteins (representing over 9000 gene products, GPs)1 were identified in U2OS cell (10), and 10,255 proteins (representing 9207 GPs) from HeLa cells (11). It took weeks (for example, 2–3 weeks) of machine running time to achieve such proteome coverage, pushing proteome analysis to the level that is comparable to mRNA-seq. With the introduction of faster machines, human proteome coverage now has reached the level of 7000–8500 proteins (representing 7000–8000 GPs) in 3 days (12). Notwithstanding the impressive improvement, the current approach using long column and long gradient suffers from inherent limitations: it takes long machine running time and it is challenging to keep reproducibility among repeated runs. Thus, current throughput and reproducibility have hindered the application of in-depth proteomics to traditional biological researches. A timesaving approach is in urgent need.In this study, we used the first-dimension (1D) short pH 10 RP prefractionation to reduce the complexity of the proteome (13), followed by sequential 30 min second-dimension (2D) short pH 3 reverse phase-(RP)-LC-MS/MS runs for protein identification (14). The results demonstrated that it is possible to identify 8000 gene products from mammalian cells within 12 h of total MS measurement time by applying this dual-short 2D-RPLC-MS/MS strategy (Fast sequencing, Fast-seq). The robustness of the strategy was revealed by parallel testing on different MS systems including quadrupole orbitrap mass spectrometer (Q-Exactive), hybrid Q-TOF (Triple-TOF 5600), and dual pressure linear ion-trap orbitrap mass spectrometer (LTQ-Orbitrap Velos), indicating the inherent strength of the approach as to merely taking advantage of the better MS instruments. This strategy increases the efficiency of MS sequencing in unit time for the identification of proteins. We achieved identification of 2200 proteins/30 mins on LTQ-Orbitrap Velos, 2800 proteins/30 mins on Q-Exactive and Triple-TOF 5600 respectively. We further optimized Fast-seq and worked out a quantitative-version of the Fast-seq workflow: Fast-quantification (Fast-quan) and applied it for protein abundance quantification in HUVEC cell that was treated with a drug candidate MLN4924 (a drug in phase III clinical trial). We were able to quantify > 6700 GPs in 1 day of MS running time and found 99 proteins were up-regulated with high confidence. We expect this efficient alternative approach for in-depth proteome analysis will make the application of MS-based proteomics more accessible to biological applications.  相似文献   
968.
Non-food-based biofuel feedstocks are in high demand worldwide. Among the various feedstocks, microalgae are the most promising feedstock for mitigating atmospheric CO2 and producing biodiesel. In this study, various concentrations of CO2, from 0.03 to 12%, were used to investigate their effect on the cell growth, biomass and lipid production and fatty acid composition of Dunaliella sp. in a closed photobioreactor. The results showed that the highest biomass and total lipids, 521 mg/L/d and 40 mg/L/d, respectively, were produced with 5% CO2 aeration during the logarithmic growth phase. The oleic acid (18:1n9c) and elaidic acid (18:1n9t) contents were increased approximately two fold. The physiological responses of Dunaliella sp. at 10% CO2 were similar to those at 5% CO2. Therefore, the present results suggest that 5–10% is a suitable CO2 concentration range for Dunaliella sp. growth to mitigate atmospheric CO2 and increase biofuel production.  相似文献   
969.
970.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号