排序方式: 共有127条查询结果,搜索用时 0 毫秒
81.
82.
83.
84.
Zou H Lee J Kilani AF Kim K Trang P Kim J Liu F 《The Journal of biological chemistry》2004,279(31):32063-32070
Engineered RNase P ribozymes are promising gene-targeting agents that can be used in both basic research and clinical applications. We have previously selected ribozyme variants for their activity in cleaving an mRNA substrate from a pool of ribozymes containing randomized sequences. In this study, one of the variants was used to target the mRNA encoding thymidine kinase (TK) of herpes simplex virus 1 (HSV-1). The variant exhibited enhanced cleavage and substrate binding and was at least 30 times more efficient in cleaving TK mRNA in vitro than the ribozyme derived from the wild type sequence. Our results provide the first direct evidence to suggest that a point mutation at nucleotide 95 of RNase P catalytic RNA from Escherichia coli (G(95) --> U(95)) increases the rate of cleavage, whereas another mutation at nucleotide 200 (A(200) --> C(200)) enhances substrate binding of the ribozyme. A reduction of about 99% in TK expression was observed in cells expressing the variant, whereas a 70% reduction was found in cells expressing the ribozyme derived from the wild type sequence. Thus, the RNase P ribozyme variant is highly effective in inhibiting HSV-1 gene expression. Our study demonstrates that ribozyme variants increase their cleavage activity and efficacy in blocking gene expression in cells through enhanced substrate binding and rate of cleavage. These results also provide insights into the mechanism of how RNase P ribozymes efficiently cleave an mRNA substrate and, furthermore, facilitate the development of highly active RNase P ribozymes for gene-targeting applications. 相似文献
85.
Xu H Wilcox D Nguyen P Voorbach M Suhar T Morgan SJ An WF Ge L Green J Wu Z Gimeno RE Reilly R Jacobson PB Collins CA Landschulz K Surowy T 《Biochemical and biophysical research communications》2006,349(1):439-448
Glycerol-3-phosphate acyltransferase (GPAT) controls the first step of triglyceride (TAG) synthesis. Three distinct GPAT activities have been identified, two localized in mitochondria and one in microsomes. Mitochondrial GPAT1 (mtGPAT1) is abundantly expressed in the liver and constitutes approximately 50% of total GPAT activities in this organ. Hepatic mtGPAT1 activity is elevated in obese rodents. Mice deficient in mtGPAT1 have an improved lipid profile. To investigate if beneficial effects can result from reduced hepatic expression of mtGPAT1 in adult obese mice, adenoviral vector-based short hairpin RNA interference (shRNA) technology was used to knockdown mtGPAT1 expression in livers of ob/ob mice. Reduced expression of mtGPAT1 mRNA in liver of ob/ob mice resulted in dramatic and dose dependent reduction in mtGPAT1 activity. Reduced hepatic TAG, diacylglycerol, and free fatty acid, as well as reduced plasma cholesterol and glucose, were also observed. Fatty acid composition analysis revealed decrease of C16:0 in major lipid species. Our results demonstrate that acute reduction of mtGPAT1 in liver of ob/ob mice reduces TAG synthesis, which points to a role for mtGPAT1 in the correction of obesity and related disorders. 相似文献
86.
Le Ba Vinh Hyun-Jae Jang Nguyen Viet Phong Kyoungwon Cho Sung Sun Park Jong Seong Kang Young Ho Kim Seo Young Yang 《Bioorganic & medicinal chemistry letters》2019,29(8):965-969
Using various chromatographic techniques, 23 triterpene saponins (1–23) were isolated from an ethanol extract of Stauntonia hexaphylla, including two new compounds (12 and 15). Their chemical structures were established by comprehensive spectroscopic methods such as 1D- and 2D-NMR, and HR-ESI-MS, and chemical reactions. The anti-inflammatory activities of the isolated saponins were determined using the nitric oxide (NO) assay. Compound 13 exhibited the greatest inhibitory effect (IC50?=?0.59?μM). In addition to NO, compound 13 suppressed the secretion of PGE2, IL-1β, and IL-6, but not TNF-α, and inhibited the protein expression of iNOS and COX-2 in LPS-activated RAW264.7 cells. The chemical derivatives of the isolated compounds were studied using structure–activity relationships. The results suggested that compound 13 isolated from S. hexaphylla might be useful for treating inflammation. This is the first comprehensive study of saponins from the leaves of S. hexaphylla based on anti-inflammatory extract screening guidelines. 相似文献
87.
Arivazhagan Rajendran Masayuki Endo Kumi Hidaka Phong Lan Thao Tran Jean-Louis Mergny Hiroshi Sugiyama 《Nucleic acids research》2013,41(18):8738-8747
Guanine-rich oligonucleotides often show a strong tendency to form supramolecular architecture, the so-called G-quadruplex structure. Because of the biological significance, it is now considered to be one of the most important conformations of DNA. Here, we describe the direct visualization and single-molecule analysis of the formation of a tetramolecular G-quadruplex in KCl solution. The conformational changes were carried out by incorporating two duplex DNAs, with G–G mismatch repeats in the middle, inside a DNA origami frame and monitoring the topology change of the strands. In the absence of KCl, incorporated duplexes had no interaction and laid parallel to each other. Addition of KCl induced the formation of a G-quadruplex structure by stably binding the duplexes to each other in the middle. Such a quadruplex formation allowed the DNA synapsis without disturbing the duplex regions of the participating sequences, and resulted in an X-shaped structure that was monitored by atomic force microscopy. Further, the G-quadruplex formation in KCl solution and its disruption in KCl-free buffer were analyzed in real-time. The orientation of the G-quadruplex is often difficult to control and investigate using traditional biochemical methods. However, our method using DNA origami could successfully control the strand orientations, topology and stoichiometry of the G-quadruplex. 相似文献
88.
Yeh VS Kurukulasuriya R Fung S Monzon K Chiou W Wang J Stolarik D Imade H Shapiro R Knourek-Segel V Bush E Wilcox D Nguyen PT Brune M Jacobson P Link JT 《Bioorganic & medicinal chemistry letters》2006,16(21):5555-5560
A series of metabolically stable butyrolactam 11beta-HSD1 inhibitors have been synthesized and biologically evaluated. These compounds exhibit excellent HSD1 potency and HSD2 selectivity, pharmacokinetic, and pharmacodynamic profiles. 相似文献
89.
Phong Huynh Xuan Klanrit Preekamol Dung Ngo Thi Phuong Yamada Mamoru Thanonkeo Pornthap 《Annals of microbiology》2019,69(7):765-776
The purpose of this study was to isolate, identify, and characterize the thermotolerant yeasts for use in high-temperature ethanol fermentation. Thermotolerant yeasts were isolated and screened from soil samples collected from the Mekong Delta, Vietnam, using the enrichment method. Classification and identification of the selected thermotolerant yeasts were performed using matrix-assisted laser desorption ionization/time-of-fight mass spectrometry (MALDI-TOF/MS) and nucleotide sequencing of the D1/D2 domain of the 26S rDNA and the internal transcribed spacer (ITS) 1 and 2 regions. The ethanol production by the selected thermotolerant yeast was carried out using pineapple waste hydrolysate (PWH) as feedstock. A total of 174 yeast isolates were obtained from 80 soil samples collected from 13 provinces in the Mekong Delta, Vietnam. Using MALDI-TOF/MS and nucleotide sequencing of the D1/D2 domain and the ITS 1 and 2 regions, six different yeast species were identified, including Meyerozyma caribbica, Saccharomyces cerevisiae, Candida tropicalis, Torulaspora globosa, Pichia manshurica, and Pichia kudriavzevii. Among the isolated thermotolerant yeasts, P. kudriavzevii CM4.2 displayed great potential for high-temperature ethanol fermentation. The maximum ethanol concentration (36.91 g/L) and volumetric ethanol productivity (4.10 g/L h) produced at 45 °C by P. kudriavzevii CM4.2 were achieved using PWH containing 103.08 g/L of total sugars as a feedstock. These findings clearly demonstrate that the newly isolated thermotolerant yeast P. kudriavzevii CM4.2 has a high potential for second-generation bioethanol production at high temperature. 相似文献
90.
Bell L Bickford S Nguyen PH Wang J He T Zhang B Friche Y Zimmerlin A Urban L Bojanic D 《Journal of biomolecular screening》2008,13(5):343-353
The potential for metabolism-related drug-drug interactions by new chemical entities is assessed by monitoring the impact of these compounds on cytochrome P450 (CYP) activity using well-characterized CYP substrates. The conventional gold standard approach for in vitro evaluation of CYP inhibitory potential uses pooled human liver microsomes (HLM) in conjunction with prototypical drug substrates, often quantified by LC-MS/MS. However, fluorescent CYP inhibition assays, which use recombinantly expressed CYPs and fluorogenic probe substrates, have been employed in early drug discovery to provide low-cost, high-throughput assessment of new chemical entities. Despite its greatly enhanced throughput, this approach has been met with mixed success in predicting the data obtained with the conventional gold standard approach (HLM+LC-MS). The authors find that the predictivity of fluorogenic assays for the major CYP isoforms 3A4 and 2D6 may depend on the quality of the test compounds. Although the structurally more optimized marketed drugs yielded acceptable correlations between the fluorogenic and HLM+LC-MS/MS assays for CYPs 3A4, 2D6, and 2C9 (r2 = 0.5-0.7; p < 0.005), preoptimization, early discovery compounds yielded poorer correlations (r2 < or = 0.2) for 2 of these major isoforms, CYPs 3A4 and 2D6. Potential reasons for the observed differences are discussed. 相似文献