首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8859篇
  免费   1376篇
  2021年   120篇
  2019年   75篇
  2018年   106篇
  2017年   99篇
  2016年   149篇
  2015年   219篇
  2014年   270篇
  2013年   328篇
  2012年   453篇
  2011年   400篇
  2010年   249篇
  2009年   238篇
  2008年   343篇
  2007年   402篇
  2006年   323篇
  2005年   322篇
  2004年   296篇
  2003年   294篇
  2002年   253篇
  2001年   282篇
  2000年   286篇
  1999年   227篇
  1998年   134篇
  1997年   117篇
  1996年   97篇
  1995年   120篇
  1994年   127篇
  1993年   115篇
  1992年   210篇
  1991年   180篇
  1990年   193篇
  1989年   218篇
  1988年   327篇
  1987年   191篇
  1986年   141篇
  1985年   152篇
  1984年   131篇
  1983年   119篇
  1982年   94篇
  1981年   84篇
  1980年   98篇
  1979年   108篇
  1978年   105篇
  1977年   113篇
  1976年   86篇
  1975年   81篇
  1974年   96篇
  1973年   88篇
  1972年   77篇
  1970年   83篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
Muscle contraction is brought about by the cyclical interaction of myosin with actin coupled to the breakdown of ATP. The current view of the mechanism is that the bound actomyosin complex (or "cross-bridge") produces force and movement by a change in conformation. This process is known as the "working stroke." We have measured the stiffness and working stroke of a single cross-bridge (kappa xb, dxb, respectively) with an optical tweezers transducer. Measurements were made with the "three bead" geometry devised by Finer et al. (1994), in which two beads, supported in optical traps, are used to hold an actin filament in the vicinity of a myosin molecule, which is immobilized on the surface of a third bead. The movements and forces produced by actomyosin interactions were measured by detecting the position of both trapped beads. We measured, and corrected for, series compliance in the system, which otherwise introduces large errors. First, we used video image analysis to measure the long-range, force-extension property of the actin-to-bead connection (kappa con), which is the main source of "end compliance." We found that force-extension diagrams were nonlinear and rather variable between preparations, i.e., end compliance depended not only upon the starting tension, but also upon the F-actin-bead pair used. Second, we measured kappa xb and kappa con during a single cross-bridge attachment by driving one optical tweezer with a sinusoidal oscillation while measuring the position of both beads. In this way, the bead held in the driven optical tweezer applied force to the cross-bridge, and the motion of the other bead measured cross-bridge movement. Under our experimental conditions (at approximately 2 pN of pretension), connection stiffness (kappa con) was 0.26 +/- 0.16 pN nm-1. We found that rabbit heavy meromyosin produced a working stroke of 5.5 nm, and cross-bridge stiffness (kappa xb) was 0.69 +/- 0.47 pN nm-1.  相似文献   
942.
A strain of Pseudomonas putida isolated from activated sewage grew aerobically on the xenoestrogen precursor, nonylphenol polyethoxylate (NPEOx, where x is the number of ethoxylate units) as sole carbon source. Comparative growth yields on NPEOav6, NPEOav9, and NPEOav20 (mixtures with average ethoxylate numbers as indicated) were consistent with utilization of all but two ethoxylate units, and the final accumulating metabolite was identified by gas chromatography-mass spectroscopy as nonylphenol diethoxylate (NPEO2). There was no growth on nonylphenol or polyethylene glycols, and there was no evidence for production of carboxylic acid analogs of NPEOx. Biodegradation kinetics measured by high-pressure liquid chromatography (HPLC) for each component in NPEOx mixtures showed that biodegradation proceeded via successive exoscission of the ethoxylate chain and not by direct scission between the second and third ethoxylate residues. The NPEOx-degrading activity was inducible by substrate, and cell extracts of NPEOav9-induced cells were also active on the pure alcohol ethoxylate, dodecyl octaethoxylate (AEO8), producing sequentially, under either aerobic or anaerobic conditions, AEO7, AEO6, AEO5, etc., thus demonstrating that the pathway involved removal of single ethoxylate units. HPLC analysis of 2,4-dinitrophenylhydrazone derivatives revealed acetaldehyde (ethanal) as the sole aldehydic product from either NPEOav9 or AEO8 under either aerobic or anaerobic conditions. We propose a mechanism for biotransformation which involves an oxygen-independent hydroxyl shift from the terminal to the penultimate carbon of the terminal ethoxylate unit of NPEOx and dissociation of the resulting hemiacetal to release acetaldehyde and the next-lower homolog, NPEOx−1, which then undergoes further cycles of the same reaction until x = 2.  相似文献   
943.
A mutant (JY2190) of Streptococcus pneumoniae Rx1 which had acquired the ability to grow in the absence of choline and analogs was isolated. Lipoteichoic acid (LTA) and wall teichoic acid (TA) isolated from the mutant were free of phosphocholine and other phosphorylated amino alcohols. Both polymers showed an unaltered chain structure and, in the case of LTA, an unchanged glycolipid anchor. The cell wall composition was also not altered except that, due to the lack of phosphocholine, the phosphate content of cell walls was half that of the parent strain. Isolated cell walls of the mutant were resistant to hydrolysis by pneumococcal autolysin (N-acetylmuramyl-l-alanine amidase) but were cleaved by the muramidases CPL and cellosyl. The lack of active autolysin in the mutant cells became apparent by impaired cell separation at the end of cell division and by resistance against stationary-phase and penicillin-induced lysis. As a result of the absence of choline in the LTA, pneumococcal surface protein A (PspA) was no longer retained on the cytoplasmic membrane. During growth in the presence of choline, which was incorporated as phosphocholine into LTA and TA, the mutant cells separated normally, did not release PspA, and became penicillin sensitive. However, even under these conditions, they did not lyse in the stationary phase, and they showed poor reactivity with antibody to phosphocholine and an increased release of C-polysaccharide from the cell. In contrast to ethanolamine-grown parent cells (A. Tomasz, Proc. Natl. Acad. Sci. USA 59:86–93, 1968), the choline-free mutant cells retained the capability to undergo genetic transformation but, compared to Rx1, with lower frequency and at an earlier stage of growth. The properties of the mutant could be transferred to the parent strain by DNA of the mutant.Pneumococci differ from other gram-positive bacteria in that their lipoteichoic acid (LTA) and wall teichoic acid (TA) have the same chain structure which is, moreover, unusually complex (Fig. (Fig.1):1): glycerophosphate is replaced by ribitol phosphate (7), and between the ribitol phosphate residues a tetrasaccharide is intercalated (23). It contains d-glucose, 2-acetamido-4-amino-2,4,6-trideoxy-d-galactose (AATGal), and two N-acetyl-d-galactosaminyl residues, one or both of which carry a phosphocholine residue at O-6 (references 3 and 12 and this report). Open in a separate windowFIG. 1Pneumococcal TA and LTA. As shown, in strain R6 most of the repeats carry two phosphocholine residues each, at O-6 of the N-acetyl-d-galactosaminyl residues (3, 12). In strain Rx1 and Rx1/AL, most repeats contain one phosphocholine residue (this report) attached to O-6 of the non-ribitol-linked galactosaminyl residue (14).Pneumococci are not able to synthesize the choline required for the synthesis of these substituents. Moreover, choline is an essential growth factor (2, 30) but can be substituted in this function by nutritional ethanolamine (EA) (38). Phosphoethanolamine is incorporated into LTA and TA in place of phosphocholine (14), but it cannot replace phosphocholine functionally. Phosphocholine-substituted LTA serves to anchor pneumococcal surface protein A (PspA) to the outer layer of the cytoplasmic membrane, with choline-mediated interaction between membrane-associated LTA and the C-terminal repeat region of PspA. In EA-grown bacteria, PspA is no longer retained and is released into the surrounding medium (45). Phosphocholine substituents also play an essential role for the activity of the major pneumococcal autolysin, an N-acetylmuramyl-l-alanine amidase (38). This protein possesses a choline-binding C-terminal domain that is essential for activity but, unlike PspA, is not essential for retention on the pneumococcal cell surface (16, 32). Binding of phosphocholine-substituted LTA to this domain results in potent inhibition of the amidase (21). The inhibitory property is dependent on the micellar structure of LTA (13) and lost by deacylation (5). Phosphocholine-substituted LTA may also participate in the transport of the amidase through the cytoplasmic membrane from the cytosol (5), the location of its synthesis (15). It additionally effects the conversion of the inactive E form of the enzyme into the active C form (5). This conversion is likewise effected by the choline residues of cell wall-linked TA (33, 39). Furthermore, binding of the amidase to the choline residues of TA is prerequisite for the hydrolysis of cell walls by the enzyme (18, 22). It should be noted that the amidase is not essential for growth. Though the enzyme is completely inactive in EA grown cells, the growth rate is not affected. However, cell separation is impaired, and there is a loss of stationary-phase and penicillin-induced cell lysis (38, 40), as well as a loss of genetic transformation (38). After insertional inactivation of the autolysin gene (lytA), the autolysin-deficient mutants (Lyt) grew normally (31) and did not even show impeded cell separation (41).In this report, we describe a mutant which acquired the ability to grow in the absence of choline and analogs. Except for the observation that [3H]choline-substituted LTA is not a precursor of [3H]choline-substituted TA (6), nothing is known about the biosyntheses of pneumococcal LTA and TA and the stage of biosynthesis at which phosphocholine is incorporated. Since the absence of choline incorporation might affect the structure of LTA and TA as well as the composition of cell walls, we included relevant analyses in our study.(A preliminary report of this work was presented in an overview on pneumococcal LTA and TA at the International Meeting on the Molecular Biology of Streptococcus pneumoniae and Its Diseases, Oeiras, Portugal, September 24 to 29, 1996 [10].)  相似文献   
944.
945.
We tested the role of the “spring-loaded” conformational change in the fusion mechanism of the influenza hemagglutinin (HA) by assessing the effects of 10 point mutants in the region of high coiled-coil propensity, HA2 54–81. The mutants included proline substitutions at HA2 55, 71, and 80, as well as a double proline substitution at residues 55 and 71. Mutants were expressed in COS or 293T cells and assayed for cell surface expression and structural features as well as for their ability to change conformation and induce fusion at low pH. We found the following: Specific mutations affected the precise carbohydrate structure and folding of the HA trimer. All of the mutants, however, formed trimers that could be expressed at the cell surface in a form that could be proteolytically cleaved from the precursor, HA0, to the fusion-permissive form, HA1-S-S-HA2. All mutants reacted with an antibody against the major antigenic site and bound red blood cells. Seven out of ten mutants displayed a wild-type (wt) or moderately elevated pH dependence for the conformational change. V55P displayed a substantial reduction (~60– 80%) in the initial rate of lipid mixing. The other single mutants displayed efficient fusion with the same pH dependence as wt-HA. The double proline mutant V55P/ S71P displayed no fusion activity despite being well expressed at the cell surface as a proteolytically cleaved trimer that could bind red blood cells and change conformation at low pH. The impairment in fusion for both V55P and V55P/S71P was at the level of outer leaflet lipid mixing. We interpret our results in support of the hypothesis that the spring-loaded conformational change is required for fusion. An alternate model is discussed.  相似文献   
946.
Otoliths and gonads of blackbelly rosefish Helicolenus dactylopterus dactylopterus were collected from the commercial fishery off the Carolinas in 1994–1997. Opaque bands on transverse sections of otoliths were determined to be annuli by analysis of marginal increments. Opaque zone formation occurs between July and January. Ages ranged from 7 to 30 years. Blackbelly rosefish have intraovarian gestation. Fertilization is internal, as free spermatozoa were found primarily in resting ovaries from July through early December with peak occurrence in September through November. There was a delay of 1–3 months before fertilization, as oocyte development did not begin until December. Occurrence during January through April of early-celled embryos, the most advanced stage observed, and postovulatory follicles indicated that oocyte development was rapid. Egg development occurs in a clear gelatinous matrix secreted into the ovarian cavity. The reproductive mode is a zygoparous form of oviparity, intermediate between oviparity and viviparity. Population sex ratio departed markedly from 1: 1 for most length intervals. Males were more abundant at lengths >250 mm L T and the overall male: female ratio was 1 : 0·60.  相似文献   
947.
948.
 The variation at loci with similarity to DRB class II major histocompatibility complex loci was assessed in 313 beluga collected from 13 sampling locations across North America, and 11 narwhal collected in the Canadian high Arctic. Variation was assessed by amplification of exon 2, which codes for the peptide binding region, via the polymerase chain reaction, followed by either cloning and DNA sequencing or single-stranded conformation polymorphism analysis. Two DRB loci were identified in beluga: DRB1, a polymorphic locus, and, DRB2, a monomorphic locus. Eight alleles representing five distinct lineages (based on sequence similarity) were found at the beluga DRB1 locus. Although the relative number of alleles is low when compared with terrestrial mammals, the amino acid variation found among the lineages is moderate. At the DRB1 locus, the average number of nonsynonymous substitutions per site is greater than the average number of synonymous substitutions per site (0.0806 : 0.0207, respectively;P<0.01). Most of the 31 amino acid substitutions do not conserve the physiochemical properties of the residue, and 21 of these are located at positions implicated as forming pockets responsible for the selective binding of foreign peptide side chains. Only DRB1 variation was examined in 11 narwhal, revealing a low amount of variation. These data are consistent with an important role for the DRB1 locus in the cellular immune response of beluga. In addition, the ratio of nonsynonymous to synonymous substitutions is similar to that among primate alleles, arguing against a reduction in the balancing selection pressure in the marine environment. Two hypotheses may explain the modest amount of Mhc variation when compared with terrestrial mammals: small population sizes at speciation or a reduced neutral substitution rate in cetaceans. Received: 15 July 1997 / Revised: 24 March 1998  相似文献   
949.
We analyze the control of frequency for a synchronized inhibitory neuronal network. The analysis is done for a reduced membrane model with a biophysically based synaptic influence. We argue that such a reduced model can quantitatively capture the frequency behavior of a larger class of neuronal models. We show that in different parameter regimes, the network frequency depends in different ways on the intrinsic and synaptic time constants. Only in one portion of the parameter space, called phasic, is the network period proportional to the synaptic decay time. These results are discussed in connection with previous work of the authors, which showed that for mildly heterogeneous networks, the synchrony breaks down, but coherence is preserved much more for systems in the phasic regime than in the other regimes. These results imply that for mildly heterogeneous networks, the existence of a coherent rhythm implies a linear dependence of the network period on synaptic decay time and a much weaker dependence on the drive to the cells. We give experimental evidence for this conclusion.  相似文献   
950.
We study some mechanisms responsible for synchronous oscillations and loss of synchrony at physiologically relevant frequencies (10–200 Hz) in a network of heterogeneous inhibitory neurons. We focus on the factors that determine the level of synchrony and frequency of the network response, as well as the effects of mild heterogeneity on network dynamics. With mild heterogeneity, synchrony is never perfect and is relatively fragile. In addition, the effects of inhibition are more complex in mildly heterogeneous networks than in homogeneous ones. In the former, synchrony is broken in two distinct ways, depending on the ratio of the synaptic decay time to the period of repetitive action potentials (s/T), where T can be determined either from the network or from a single, self-inhibiting neuron. With s/T > 2, corresponding to large applied current, small synaptic strength or large synaptic decay time, the effects of inhibition are largely tonic and heterogeneous neurons spike relatively independently. With s/T < 1, synchrony breaks when faster cells begin to suppress their less excitable neighbors; cells that fire remain nearly synchronous. We show numerically that the behavior of mildly heterogeneous networks can be related to the behavior of single, self-inhibiting cells, which can be studied analytically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号