首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   35篇
  2021年   10篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   10篇
  2014年   9篇
  2013年   12篇
  2012年   14篇
  2011年   20篇
  2010年   16篇
  2009年   15篇
  2008年   15篇
  2007年   13篇
  2006年   14篇
  2005年   12篇
  2004年   8篇
  2003年   11篇
  2002年   13篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1987年   4篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1975年   3篇
  1974年   3篇
  1973年   8篇
  1972年   3篇
  1970年   3篇
  1969年   6篇
  1968年   3篇
  1967年   5篇
  1966年   3篇
  1965年   2篇
  1963年   4篇
  1957年   2篇
  1954年   2篇
  1952年   2篇
排序方式: 共有339条查询结果,搜索用时 15 毫秒
21.
Villin is an actin-binding protein present in intestinal and kidney brush borders. Villin has been shown to present in vitro Ca(2+)-dependent bundling and severing F-actin properties. The study of villin knock-out mice allowed us to show that while bundling of F-actin microfilaments is unaffected, this protein is important for the reorganization of the actin cytoskeleton elicited by various signals during both physiological and pathological conditions. Here, we studied the role of villin during infection by Shigella flexneri, the causative agent of bacillary dysentery. This bacterium induces the reorganization of the host actin cytoskeleton to penetrate into epithelial cells and spread from cell to cell. In vivo, we show that unlike newborn vil+/+ mice, which are sensitive to Shigella invasion, resulting in a destructive inflammatory response of the intestinal mucosa following intragastric inoculation, newborn vil-/- mice appear fully resistant to infection. Using primary cultures of intestinal epithelial cells derived from vil+/+ or vil -/- mice, we demonstrate that villin plays an essential role in S. flexneri entry and cell-to-cell dissemination. Villin expression is thus critical for Shigella infection through its ability to remodel the actin cytoskeleton.  相似文献   
22.
Amyotrophic lateral sclerosis (ALS) is a debilitating and fatal late-onset neurodegenerative disease. Familial cases of ALS (FALS) constitute ∼10% of all ALS cases, and mutant superoxide dismutase 1 (SOD1) is found in 15–20% of FALS. SOD1 mutations confer a toxic gain of unknown function to the protein that specifically targets the motor neurons in the cortex and the spinal cord. We have previously shown that the autosomal dominant Legs at odd angles (Loa) mutation in cytoplasmic dynein heavy chain (Dync1h1) delays disease onset and extends the life span of transgenic mice harboring human mutant SOD1G93A. In this study we provide evidence that despite the lack of direct interactions between mutant SOD1 and either mutant or wild-type cytoplasmic dynein, the Loa mutation confers significant reductions in the amount of mutant SOD1 protein in the mitochondrial matrix. Moreover, we show that the Loa mutation ameliorates defects in mitochondrial respiration and membrane potential observed in SOD1G93A motor neuron mitochondria. These data suggest that the Loa mutation reduces the vulnerability of mitochondria to the toxic effects of mutant SOD1, leading to improved mitochondrial function in SOD1G93A motor neurons.  相似文献   
23.
Arn1 is an integral membrane protein that mediates the uptake of ferrichrome, an important nutritional source of iron, in Saccharomyces cerevisiae. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network to the vacuolar lumen for degradation. In the presence of low levels of ferrichrome, the siderophore binds to a receptor domain on Arn1, triggering the redistribution of Arn1 to the plasma membrane. When extracellular ferrichrome levels are high, Arn1 cycles between the plasma membrane and intracellular vesicles. To further understand the mechanisms of trafficking of Arn1p, we screened 4580 viable yeast deletion mutants for mislocalization of Arn1-GFP using synthetic genetic array technology. We identified over 100 genes required for trans-Golgi network-to-vacuole trafficking of Arn1-GFP and only two genes, SER1 and SER2, required for the ferrichrome-induced plasma membrane trafficking of Arn1-GFP. SER1 and SER2 encode two enzymes of the major serine biosynthetic pathway, and the Arn1 trafficking defect in the ser1Δ strain was corrected with supplemental serine or glycine. Plasma membrane trafficking of Hxt3, a structurally related glucose transporter, was unaffected by SER1 deletion. Serine is required for the synthesis of multiple cellular components, including purines, sphingolipids, and phospholipids, but of these only phosphatidylserine corrected the Arn1 trafficking defects of the ser1Δ strain. Strains with defects in phospholipid synthesis also exhibited alterations in Arn1p trafficking, indicating that the intracellular trafficking of some transporters is dependent on the phospholipid composition of the cellular membranes.  相似文献   
24.
Coffee is a globally important crop that is subject to numerous pest problems, many of which are partially controlled by predatory ants. Yet several studies have proposed that these ecosystem services may be reduced where agricultural systems are more intensively managed. Here we investigate the predatory ability of twig-nesting ants on the main pest of coffee, the coffee berry borer (Hypothenemus hampei) under different management systems in southwest Chiapas, Mexico. We conducted both laboratory and field experiments to examine which twig-nesting ant species, if any, can prey on free-living borers or can remove borers embedded in coffee fruits and whether the effects of the twig-nesting ant community differ with habitat type. Results indicate that several species of twig-nesting ants are effective predators of both free-living borers and those embedded in coffee fruits. In the lab, Pseudomyrmex ejectus, Pseudomyrmex simplex, and Pseudomyrmex PSW-53 effectively removed free-living and embedded borers. In the field, abundance, but not diversity, of twig-nesting ant colonies was influenced by shade management techniques, with the highest colony abundance present in the sites where shade trees were recently pruned. However, borer removal rates in the field were significant only in the shadiest site, but not in more intensively managed sites. This study provides evidence that twig-nesting ants can act as predators of the coffee berry borer and that the presence of twig-nesting ants may not be strongly linked to shade management intensity, as has been suggested for other arthropod predators of the borer.  相似文献   
25.
Although Candida albicans and Saccharomyces cerevisiae express very similar systems of iron uptake, these species differ in their capacity to use heme as a nutritional iron source. Whereas C. albicans efficiently takes up heme, S. cerevisiae grows poorly on media containing heme as the sole source of iron. We identified a gene from C. albicans that would enhance heme uptake when expressed in S. cerevisiae. Overexpression of CaFLC1 (for flavin carrier 1) stimulated the growth of S. cerevisiae on media containing heme iron. In C. albicans, deletion of both alleles of CaFLC1 resulted in a decrease in heme uptake activity, whereas overexpression of CaFLC1 resulted in an increase in heme uptake. The S. cerevisiae genome contains three genes with homology to CaFLC1, and two of these, termed FLC1 and FLC2, also stimulated growth on heme when overexpressed in S. cerevisiae. The S. cerevisiae Flc proteins were detected in the endoplasmic reticulum and the FLC genes encoded an essential function, as strains deleted for either FLC1 or FLC2 were viable, but deletion of both FLC1 and FLC2 was synthetically lethal. FLC gene deletion resulted in pleiotropic phenotypes related to defects in cell wall integrity. High copy suppressors of this synthetic lethality included three mannosyltransferases, VAN1, KTR4, and HOC1. FLC deletion strains exhibited loss of cell wall mannose phosphates, defects in cell wall assembly, and delayed maturation of carboxypeptidase Y. Permeabilized cells lacking FLC proteins exhibited dramatic loss of FAD import activity. We propose that the FLC genes are required for import of FAD into the lumen of the endoplasmic reticulum, where it is required for disulfide bond formation.  相似文献   
26.

Background  

A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E) suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner.  相似文献   
27.
Caenorhabditis elegans and human HRG-1-related proteins are conserved, membrane-bound permeases that bind and translocate heme in metazoan cells via a currently uncharacterized mechanism. Here, we show that cellular import of heme by HRG-1-related proteins from worms and humans requires strategically located amino acids that are topologically conserved across species. We exploit a heme synthesis-defective Saccharomyces cerevisiae mutant to model the heme auxotrophy of C. elegans and demonstrate that, under heme-deplete conditions, the endosomal CeHRG-1 requires both a specific histidine in the predicted second transmembrane domain (TMD2) and the FARKY motif in the C terminus tail for heme transport. By contrast, the plasma membrane CeHRG-4 transports heme by utilizing a histidine in the exoplasmic (E2) loop and the FARKY motif. Optimal activity under heme-limiting conditions, however, requires histidine in the E2 loop of CeHRG-1 and tyrosine in TMD2 of CeHRG-4. An analogous system exists in humans, because mutation of the synonymous histidine in TMD2 of hHRG-1 eliminates heme transport activity, implying an evolutionary conserved heme transport mechanism that predates vertebrate origins. Our results support a model in which heme is translocated across membranes facilitated by conserved amino acids positioned on the exoplasmic, cytoplasmic, and transmembrane regions of HRG-1-related proteins. These findings may provide a framework for understanding the structural basis of heme transport in eukaryotes and human parasites, which rely on host heme for survival.  相似文献   
28.
Eukaryotic cells contain dozens, perhaps hundreds, of iron-dependent proteins, which perform critical functions in nearly every major cellular process. Nutritional iron is frequently available to cells in only limited amounts; thus, unicellular and higher eukaryotes have evolved mechanisms to cope with iron scarcity. These mechanisms have been studied at the molecular level in the model eukaryotes Saccharomyces cerevisiae and Schizosaccharomyces pombe, as well as in some pathogenic fungi. Each of these fungal species exhibits metabolic adaptations to iron deficiency that serve to reduce the cell's reliance on iron. However, the regulatory mechanisms that accomplish these adaptations differ greatly between fungal species. This article is part of a Special Issue entitled: Cell Biology of Metals.  相似文献   
29.
Acute viral infection causes damages to the host due to uncontrolled viral replication but even replication deficient viral vectors can induce systemic inflammatory responses. Indeed, overactive host innate immune responses to viral vectors have led to devastating consequences. Macrophages are important innate immune cells that recognize viruses and induce inflammatory responses at the early stage of infection. However, tissue resident macrophages are not easily activated by the mere presence of virus suggesting that their activation requires additional signals from other cells in the tissue in order to trigger inflammatory responses. Previously, we have shown that the cross-talk between epithelial cells and macrophages generates synergistic inflammatory responses during adenoviral vector infection. Here, we investigated whether ATP is involved in the activation of macrophages to induce inflammatory responses during an acute adenoviral infection. Using a macrophage-epithelial cell co-culture system we demonstrated that ATP signaling through P2X(7) receptor (P2X(7)R) is required for induction of inflammatory mediators. We also showed that ATP-P2X(7)R signaling regulates inflammasome activation as inhibition or deficiency of P2X(7)R as well as caspase-1 significantly reduced IL-1β secretion. Furthermore, we found that intranasal administration of replication deficient adenoviral vectors in mice caused a high mortality in wild-type mice with symptoms of acute respiratory distress syndrome but the mice deficient in P2X(7)R or caspase-1 showed increased survival. In addition, wild-type mice treated with apyrase or inhibitors of P2X(7)R or caspase-1 showed higher rates of survival. The improved survival in the P2X(7)R deficient mice correlated with diminished levels of IL-1β and IL-6 and reduced neutrophil infiltration in the early phase of infection. These results indicate that ATP, released during viral infection, is an important inflammatory regulator that activates the inflammasome pathway and regulates inflammatory responses.  相似文献   
30.

Study design

A prospective treatment study with a new brace was conducted Objective. To evaluate radiological and subjective clinical results after one year conservative brace treatment with pressure onto lordosis at the thoracolumbar joint in children with scoliosis and kyphosis.

Summary of background data

Conservative brace treatment of adolescent scoliosis is not proven to be effective in terms of lasting correction. Conservative treatment in kyphotic deformities may lead to satisfactory correction. None of the brace or casting techniques is based on sagittal forces only applied at the thoracolumbar spine (TLI= thoracolumbar lordotic intervention). Previously we showed in patients with scoliosis after forced lordosis at the thoracolumbar spine a radiological instantaneous reduction in both coronal curves of double major scoliosis.

Methods

A consecutive series of 91 children with adolescent scoliosis and kyphosis were treated with a modified symmetric 30 degrees Boston brace to ensure only forced lordosis at the thoracolumbar spine. Scoliosis was defined with a Cobb angle of at least one of the curves [greater than or equal to] 25 degrees and kyphosis with or without a curve <25 degrees in the coronal plane. Standing radiographs were made i) at start, ii) in brace at beginning and iii) after one year treatment without brace.

Results

Before treatment start ??in brace?? radiographs showed a strong reduction of the Cobb angles in different curves in kyphosis and scoliosis groups (sagittal n = 5 all p < 0.001, pelvic obliquity p < 0.001). After one year of brace treatment in scoliosis and kyphosis group the measurements on radiographs made without brace revealed an improvement in 3 Cobb angles each.

Conclusion

Conservative treatment using thoracolumbar lordotic intervention in scoliotic and kyphotic deformities in adolescence demonstrates a marked improvement after one year also in clinical and postural criteria. An effect not obtained with current brace techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号