首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   304篇
  免费   35篇
  2021年   10篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   3篇
  2015年   10篇
  2014年   9篇
  2013年   12篇
  2012年   14篇
  2011年   20篇
  2010年   16篇
  2009年   15篇
  2008年   15篇
  2007年   13篇
  2006年   14篇
  2005年   12篇
  2004年   8篇
  2003年   11篇
  2002年   13篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   10篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1987年   4篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1975年   3篇
  1974年   3篇
  1973年   8篇
  1972年   3篇
  1970年   3篇
  1969年   6篇
  1968年   3篇
  1967年   5篇
  1966年   3篇
  1965年   2篇
  1963年   4篇
  1957年   2篇
  1954年   2篇
  1952年   2篇
排序方式: 共有339条查询结果,搜索用时 187 毫秒
101.
Invasive bacterial pathogens induce an amino acid starvation (AAS) response in infected host cells that controls host defense in part by promoting autophagy. However, whether AAS has additional significant effects on the host response to intracellular bacteria remains poorly characterized. Here we showed that Shigella, Salmonella, and Listeria interfere with spliceosomal U snRNA maturation in the cytosol. Bacterial infection resulted in the rerouting of U snRNAs and their cytoplasmic escort, the survival motor neuron (SMN) complex, to processing bodies, thus forming U snRNA bodies (U bodies). This process likely contributes to the decline in the cytosolic levels of U snRNAs and of the SMN complex proteins SMN and DDX20 that we observed in infected cells. U body formation was triggered by membrane damage in infected cells and was associated with the induction of metabolic stresses, such as AAS or endoplasmic reticulum stress. Mechanistically, targeting of U snRNAs to U bodies was regulated by translation initiation inhibition and the ATF4/ATF3 pathway, and U bodies rapidly disappeared upon removal of the stress, suggesting that their accumulation represented an adaptive response to metabolic stress. Importantly, this process likely contributed to shape the host response to invasive bacteria because down-regulation of DDX20 expression using short hairpin RNA (shRNA) amplified ATF3- and NF-κB-dependent signaling. Together, these results identify a critical role for metabolic stress and invasive bacterial pathogens in U body formation and suggest that this process contributes to host defense.  相似文献   
102.
103.
The aim of the study was to evaluate anthropometric characteristics as determinants of 500 m rowing ergometer performance in physically inactive collegiate females. In this cross-sectional study, which included 196 collegiate females aged 19-23 years not participating in regular physical activities, body mass (BM), body height (BH), length of upper limbs (LA), length of lower limbs (LL), body mass index (BMI), slenderness index (SI), and the Choszcz-Podstawski index (CPI) were measured and a stepwise multiple regression analysis was performed. Participants performed 500 m maximal effort on a Concept II rowing ergometer. BM, BH, LA, LL, and the BMI, SI and CPI indices were found to be statistically significant determinants of 500 m performance. The best results (T) were achieved by females whose BH ranged from 170 to 180 cm, with LA and LL ranging from 75 to 80 cm and 85 to 90 cm, respectively. The best fitting statistical model was identified as: T = 11.6793 LR – 0.1130 LR2 – 0.0589 LN2 + 29.2157 CPI2 + 0.1370 LR·LN - 2.6926 LR·CPI – 211.7796. This study supports a need for additional studies focusing on understanding the importance of anthropometric differences in rowing ergometer performance, which could lead to establishing a better quality reference for evaluation of cardiorespiratory fitness tested using a rowing ergometer in collegiate females.  相似文献   
104.
The intracellular pathogen Salmonella enterica serovar Typhimurium causes intestinal inflammation characterized by edema, neutrophil influx and increased pro-inflammatory cytokine expression. A major bacterial factor inducing pro-inflammatory host responses is lipopolysaccharide (LPS). S. Typhimurium ΔmsbB possesses a modified lipid A, has reduced virulence in mice, and is being considered as a potential anti-cancer vaccine strain. The lack of a late myristoyl transferase, encoded by MsbB leads to attenuated TLR4 stimulation. However, whether other host receptor pathways are also altered remains unclear. Nod1 and Nod2 are cytosolic pattern recognition receptors recognizing bacterial peptidoglycan. They play important roles in the host''s immune response to enteric pathogens and in immune homeostasis. Here, we investigated how deletion of msbB affects Salmonella''s interaction with Nod1 and Nod2. S. Typhimurium Δ msbB-induced inflammation was significantly exacerbated in Nod2 −/− mice compared to C57Bl/6 mice. In addition, S. Typhimurium ΔmsbB maintained robust intestinal colonization in Nod2 −/− mice from day 2 to day 7 p.i., whereas colonization levels significantly decreased in C57Bl/6 mice during this time. Similarly, infection of Nod1 −/− and Nod1/Nod2 double-knockout mice revealed that both Nod1 and Nod2 play a protective role in S. Typhimurium ΔmsbB-induced colitis. To elucidate why S. Typhimurium ΔmsbB, but not wild-type S. Typhimurium, induced an exacerbated inflammatory response in Nod2 −/− mice, we used HEK293 cells which were transiently transfected with pathogen recognition receptors. Stimulation of TLR2-transfected cells with S. Typhimurium ΔmsbB resulted in increased IL-8 production compared to wild-type S. Typhimurium. Our results indicate that S. Typhimurium ΔmsbB triggers exacerbated colitis in the absence of Nod1 and/or Nod2, which is likely due to increased TLR2 stimulation. How bacteria with “genetically detoxified” LPS stimulate various innate responses has important implications for the development of safe and effective bacterial vaccines and adjuvants.  相似文献   
105.
Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants’ dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution – a signal of spatial self organization – but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.  相似文献   
106.
Mechanisms coupling cell cycle and cell fate operate at different steps during neural development. Intrinsic factors control the cell proliferation of distinct brain regions and changes of cell fate competence, whereas components of the cell cycle machinery could play a major role in setting the appropriate timing of the generation of different cell types.  相似文献   
107.
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号