首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   18篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   4篇
  2012年   5篇
  2011年   12篇
  2010年   1篇
  2009年   6篇
  2008年   6篇
  2007年   8篇
  2006年   4篇
  2005年   7篇
  2004年   11篇
  2003年   18篇
  2002年   10篇
  2001年   4篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   11篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有180条查询结果,搜索用时 375 毫秒
61.
The three-dimensional structure of telokin, an acidic protein identical to the C-terminal portion of smooth muscle myosin light chain kinase from turkey gizzard, has been determined at 2.8 A resolution and refined to a crystallographic R-factor of 19.5% for all measured X-ray data from 30 A to 2.8 A. Crystals used in the investigation belonged to the space group P3(2)21, with one molecule per asymmetric unit and unit cell dimensions of a = b = 64.4 A and c = 50.6 A. Telokin contains 154 amino acid residues, 103 of which were visible in the electron density map. The overall molecular fold of telokin consists of seven strands of antiparallel beta-pleated sheet that wrap around to form a barrel. There is also an extended tail of eight amino acid residues at the N terminus that does not participate in beta-sheet formation. The beta-barrel can be simply envisioned as two layers of beta-sheet, nearly parallel to one another, with one layer containing four and the other three beta-strands. This type of beta-barrel, as seen in telokin, was first observed for the CH2 domain of an immunoglobulin fragment Fc. Telokin is an intracellular protein and, as such, does not contain the disulphide linkage between beta-strands B and F normally observed in the immunoglobulin constant domains. It does, however, contain two cysteine amino acid residues (Cys63 and Cys115) that are situated at structurally identical positions to those forming the disulphide linkage in the immunoglobulin constant domain.  相似文献   
62.
Pyruvate kinase from rabbit muscle has been crystallized in a form suitable for high resolution X-ray analysis. Complexes of the enzyme with Mn2+ and either pyruvate or oxalate crystallize from solutions of polyethyl-eneglycol 8000 at pH 6.0. Crystals obtained from solutions of the complexes with pyruvate or oxalate appear isomorphous and belong to the triclinic space group P1. The crystals have unit cell dimensions a = 83.3(4) A, b = 109.4(6) A, c = 145.7 (7) A, alpha = 94.9 degrees, beta = 93.6 degrees, gamma = 112.2 degrees. These crystals diffract to better than 2.4 A resolution and are stable in the X-ray beam for at least 20 hr. Electron paramagnetic resonance measurements on a single crystal show that Mn2+ is bound to the crystalline protein.  相似文献   
63.
Insecticyanin, a blue biliprotein isolated from the tobacco hornworm Manduca sexta L., is involved in insect camouflage. Its three-dimensional structure has now been solved to 2.6 A resolution using the techniques of multiple isomorphous replacement, non-crystallographic symmetry averaging about a local 2-fold rotation axis and solvent flattening. All 189 amino acids have been fitted to the electron density map. The map clearly shows that insecticyanin is a tetramer with one of its molecular 2-fold axes coincident to a crystallographic dyad. The individual subunits have overall dimensions of 44 A X 37 A X 40 A and consist primarily of an eight-stranded anti-parallel beta-barrel flanked on one side by a 4.5-turn alpha-helix. Interestingly the overall three-dimensional fold of the insecticyanin subunit shows remarkable similarity to the structural motifs of bovine beta-lactoglobulin and the human serum retinol-binding protein. The electron density attributable to the chromophore is unambiguous and shows that it is indeed the gamma-isomer of biliverdin. The biliverdin lies towards the open end of the beta-barrel with its two propionate side chains pointing towards the solvent and it adopts a rather folded conformation, much like a heme.  相似文献   
64.
BACKGROUND: The composition and sequence of amino acids in a protein may serve the underlying needs of the nucleic acids that encode the protein (the genome phenotype). In extreme form, amino acids become mere placeholders inserted between functional segments or domains, and--apart from increasing protein length--playing no role in the specific function or structure of a protein (the conventional phenotype). METHODS: We studied the genomes of two malarial parasites and 521 prokaryotes (144 complete) that differ widely in GC% and optimum growth temperature, comparing the base compositions of the protein coding regions and corresponding lengths (kilobases). RESULTS: Malarial parasites show distinctive responses to base-compositional pressures that increase as protein lengths increase. A low-GC% species (Plasmodium falciparum) is likely to have more placeholder amino acids than an intermediate-GC% species (P. vivax), so that homologous proteins are longer. In prokaryotes, GC% is generally greater and AG% is generally less in open reading frames (ORFs) encoding long proteins. The increased GC% in long ORFs increases as species' GC% increases, and decreases as species' AG% increases. In low- and intermediate-GC% prokaryotic species, increases in ORF GC% as encoded proteins increase in length are largely accounted for by the base compositions of first and second (amino acid-determining) codon positions. In high-GC% prokaryotic species, first and third (non-amino acid-determining) codon positions play this role. CONCLUSION: In low- and intermediate-GC% prokaryotes, placeholder amino acids are likely to be well defined, corresponding to codons enriched in G and/or C at first and second positions. In high-GC% prokaryotes, placeholder amino acids are likely to be less well defined. Increases in ORF GC% as encoded proteins increase in length are greater in mesophiles than in thermophiles, which are constrained from increasing protein lengths in response to base-composition pressures.  相似文献   
65.
The back door has been proposed to be an exit pathway from the myosin active site for phosphate (P(i)) generated by adenosine 5'-triphosphate hydrolysis. We used molecular dynamics simulations to investigate the interaction of P(i) with the back door and the plausibility of P(i) release via this route. Molecular dynamics simulations were performed on the Dictyostelium motor domain with bound Mg.adenosine 5'-diphosphate (ADP) and P(i), modeled upon the Mg.ADP.BeF(x) and Mg.ADP.V(i) structures. Simulations revealed that the relaxation of ADP and free P(i) from their initial positions reduced the diameter of the back door via motions of switch 1 and switch 2 located in the upper and lower 50-kDa subdomains, respectively. In neither simulation could P(i) freely diffuse out the back door. Water molecules, however, could flux through the back door in the Mg.ADP.BeF(x)-based simulation but not in the Mg.ADP.V(i)-based simulation. In neither structure was water observed fluxing through the main (front door) entrance. These observations suggest that the ability of P(i) to leave via the back door is linked tightly to conformational changes between the upper and lower 50-kDa subdomains. The simulations offer structural explanations for (18)O-exchange with P(i) at the active site, and P(i) release being the rate-limiting step in the myosin adenosine 5'-triphosphatase.  相似文献   
66.
Large conductance, Ca(2+)-sensitive potassium (BK) channels are critical components of the O(2) signalling cascade in a number of cells, including the carotid body and central neurones. Although the nature of the BK channel O(2) sensor is still unknown, evidence suggests redox modulators might form part of the O(2) sensing channel complex. By metabolising glutathione, gamma-glutamyl transpeptidase (gammaGT) could act as such an O(2) sensor. Western blotting and immunocytochemistry revealed high gammaGT expression in HEK293 cells expressing the alpha- and beta-subunits of human recombinant BK and gammaGT co-immunoprecipitated with BKalpha. Acivicin blockade of gammaGT reversibly inhibited BK channels, suggesting that this BKalpha protein partner contributes to tonic channel activity. However, knock-out of gammaGT using siRNA had no effect on hypoxic BK channel inhibition. Together, these data indicate that gammaGT is a BKalpha protein partner, that its activity regulates BK channels but that it is not the BK O(2) sensor.  相似文献   
67.
68.
Tetracenomycin F2 cyclase (tcmI gene product), catalyzes an aromatic rearrangement in the biosynthetic pathway for tetracenomycin C in Streptomyces glaucescens. The x-ray structure of this small enzyme has been determined to 1.9-A resolution together with an analysis of site-directed mutants of potential catalytic residues. The protein exhibits a dimeric betaalphabeta ferredoxin-like fold that utilizes strand swapping between subunits in its assembly. The fold is dominated by four strands of antiparallel sheet and a layer of alpha-helices, which creates a cavity that is proposed to be the active site. This type of secondary structural arrangement has been previously observed in polyketide monooxygenases and suggests an evolutionary relationship between enzymes that catalyze adjacent steps in these biosynthetic pathways. Mutational analysis of all of the obvious catalytic bases within the active site suggests that the enzyme functions to steer the chemical outcome of the cyclization rather than providing a specific catalytic group. Together, the structure and functional analysis provide insight into the structural framework necessary to perform the complex rearrangements catalyzed by this class of polyketide cyclases.  相似文献   
69.
Luciferase, as isolated from Vibrio harveyi, is an alpha beta heterodimer. When allowed to fold in the absence of the alpha subunit, either in vitro or in vivo, the beta subunit of enzyme will form a kinetically stable homodimer that does not unfold even after prolonged incubation in 5 M urea at pH 7.0 and 18 degrees C. This form of the beta subunit, arising via kinetic partitioning on the folding pathway, appears to constitute a kinetically trapped alternative to the heterodimeric enzyme (Sinclair JF, Ziegler MM, Baldwin TO. 1994. Kinetic partitioning during protein folding yields multiple native states. Nature Struct Biol 1: 320-326). Here we describe the X-ray crystal structure of the beta 2 homodimer of luciferase from V. harveyi determined and refined at 1.95 A resolution. Crystals employed in the investigational belonged to the orthorhombic space group P2(1)2(1)2(1) with unit cell dimensions of a = 58.8 A, b = 62.0 A, and c = 218.2 A and contained one dimer per asymmetric unit. Like that observed in the functional luciferase alpha beta heterodimer, the major tertiary structural motif of each beta subunit consists of an (alpha/beta)8 barrel (Fisher AJ, Raushel FM, Baldwin TO, Rayment I. 1995. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution. Biochemistry 34: 6581-6586). The root-mean-square deviation of the alpha-carbon coordinates between the beta subunits of the hetero- and homodimers is 0.7 A. This high resolution X-ray analysis demonstrated that "domain" or "loop" swapping has not occurred upon formation of the beta 2 homodimer and thus the stability of the beta 2 species to denaturation cannot be explained in such simple terms. In fact, the subunit:subunit interfaces observed in both the beta 2 homodimer and alpha beta heterodimer are remarkably similar in hydrogen-bonding patterns and buried surface areas.  相似文献   
70.
Mammalian KIF3AC contains two distinct motor polypeptides and is best known for its role in organelle transport in neurons. Our recent studies showed that KIF3AC is as processive as conventional kinesin-1, suggesting that their ATPase mechanochemistry may be similar. However, the presence of two different motor polypeptides in KIF3AC implies that there must be a cellular advantage for the KIF3AC heterodimer. The hypothesis tested was whether there is an intrinsic bias within KIF3AC such that either KIF3A or KIF3C initiates the processive run. To pursue these experiments, a mechanistic approach was used to compare the pre-steady-state kinetics of KIF3AC to the kinetics of homodimeric KIF3AA and KIF3CC. The results indicate that microtubule collision at 11.4 μm−1 s−1 coupled with ADP release at 78 s−1 are fast steps for homodimeric KIF3AA. In contrast, KIF3CC exhibits much slower microtubule association at 2.1 μm−1 s−1 and ADP release at 8 s−1. For KIF3AC, microtubule association at 6.6 μm−1 s−1 and ADP release at 51 s−1 are intermediate between the constants for KIF3AA and KIF3CC. These results indicate that either KIF3A or KIF3C can initiate the processive run. Surprisingly, the kinetics of the initial event of microtubule collision followed by ADP release for KIF3AC is not equivalent to 1:1 mixtures of KIF3AA plus KIF3CC homodimers at the same motor concentration. These results reveal that the intermolecular communication within the KIF3AC heterodimer modulates entry into the processive run regardless of whether the run is initiated by the KIF3A or KIF3C motor domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号