全文获取类型
收费全文 | 3404篇 |
免费 | 303篇 |
国内免费 | 5篇 |
专业分类
3712篇 |
出版年
2023年 | 13篇 |
2022年 | 38篇 |
2021年 | 51篇 |
2020年 | 40篇 |
2019年 | 54篇 |
2018年 | 46篇 |
2017年 | 57篇 |
2016年 | 82篇 |
2015年 | 129篇 |
2014年 | 162篇 |
2013年 | 173篇 |
2012年 | 244篇 |
2011年 | 299篇 |
2010年 | 182篇 |
2009年 | 146篇 |
2008年 | 204篇 |
2007年 | 236篇 |
2006年 | 182篇 |
2005年 | 190篇 |
2004年 | 167篇 |
2003年 | 166篇 |
2002年 | 157篇 |
2001年 | 42篇 |
2000年 | 17篇 |
1999年 | 38篇 |
1998年 | 47篇 |
1997年 | 32篇 |
1996年 | 27篇 |
1995年 | 22篇 |
1994年 | 20篇 |
1993年 | 40篇 |
1992年 | 14篇 |
1991年 | 25篇 |
1990年 | 20篇 |
1989年 | 14篇 |
1988年 | 22篇 |
1987年 | 16篇 |
1986年 | 19篇 |
1985年 | 22篇 |
1984年 | 23篇 |
1983年 | 19篇 |
1982年 | 20篇 |
1981年 | 30篇 |
1980年 | 20篇 |
1979年 | 16篇 |
1977年 | 19篇 |
1976年 | 13篇 |
1975年 | 13篇 |
1974年 | 16篇 |
1973年 | 13篇 |
排序方式: 共有3712条查询结果,搜索用时 0 毫秒
31.
Adam Brymora Iain G. Duggin Leise A. Berven Ellen M. van Dam Basil D. Roufogalis Phillip J. Robinson 《PloS one》2012,7(11)
RalA is a membrane-associated small GTPase that regulates vesicle trafficking. Here we identify a specific interaction between RalA and ERp57, an oxidoreductase and signalling protein. ERp57 bound specifically to the GDP-bound form of RalA, but not the GTP-bound form, and inhibited the dissociation of GDP from RalA in vitro. These activities were inhibited by reducing agents, but no disulphide bonds were detected between RalA and ERp57. Mutation of all four of ERp57’s active site cysteine residues blocked sensitivity to reducing agents, suggesting that redox-dependent conformational changes in ERp57 affect binding to RalA. Mutations in the switch II region of the GTPase domain of RalA specifically reduced or abolished binding to ERp57, but did not block GTP-specific binding to known RalA effectors, the exocyst and RalBP1. Oxidative treatment of A431 cells with H2O2 inhibited cellular RalA activity, and the effect was exacerbated by expression of recombinant ERp57. The oxidative treatment significantly increased the amount of RalA localised to the cytosol. These findings suggest that ERp57 regulates RalA signalling by acting as a redox-sensitive guanine-nucleotide dissociation inhibitor (RalGDI). 相似文献
32.
Atkin JD Farg MA Turner BJ Tomas D Lysaght JA Nunan J Rembach A Nagley P Beart PM Cheema SS Horne MK 《The Journal of biological chemistry》2006,281(40):30152-30165
Mutations in Cu/Zn superoxide dismutase (SOD1) are linked to motor neuron death in familial amyotrophic lateral sclerosis (ALS) by an unclear mechanism, although misfolded SOD1 aggregates are commonly associated with disease. Proteomic analysis of the transgenic SOD1(G93A) ALS rat model revealed significant up-regulation of endoplasmic reticulum (ER)-resident protein-disulfide isomerase (PDI) family members in lumbar spinal cords. Expression of SOD1 mutants (mSOD1) led to an up-regulation of PDI in motor neuron-like NSC-34 cells but not other cell lines. Inhibition of PDI using bacitracin increased aggregate production, even in wild type SOD1 transfectants that do not readily form inclusions, suggesting PDI may protect SOD1 from aggregation. Moreover, PDI co-localized with intracellular aggregates of mSOD1 and bound to both wild type and mSOD1. SOD1 was also found in the microsomal fraction of cells despite being a predominantly cytosolic enzyme, confirming ER-Golgi-dependent secretion. In SOD1(G93A) mice, a significant up-regulation of unfolded protein response entities was also observed during disease, including caspase-12, -9, and -3 cleavage. Our findings therefore implicate unfolded protein response and ER stress-induced apoptosis in the patho-physiology of familial ALS. The possibility that PDI may be a therapeutic target to prevent SOD1 aggregation is also raised by this study. 相似文献
33.
Marla Tipping Yoosik Kim Phillip Kyriakakis Mei Tong Stanislav Y Shvartsman Alexey Veraksa 《The EMBO journal》2010,29(19):3222-3235
β‐Arrestins have been implicated in the regulation of multiple signalling pathways. However, their role in organism development is not well understood. In this study, we report a new in vivo function of the Drosophila β‐arrestin Kurtz (Krz) in the regulation of two distinct developmental signalling modules: MAPK ERK and NF‐κB, which transmit signals from the activated receptor tyrosine kinases (RTKs) and the Toll receptor, respectively. Analysis of the expression of effectors and target genes of Toll and the RTK Torso in krz maternal mutants reveals that Krz limits the activity of both pathways in the early embryo. Protein interaction studies suggest a previously uncharacterized mechanism for ERK inhibition: Krz can directly bind and sequester an inactive form of ERK, thus preventing its activation by the upstream kinase, MEK. A simultaneous dysregulation of different signalling systems in krz mutants results in an abnormal patterning of the embryo and severe developmental defects. Our findings uncover a new in vivo function of β‐arrestins and present a new mechanism of ERK inhibition by the Drosophila β‐arrestin Krz. 相似文献
34.
The fact that glycosylation is not a significant process in prokaryotes means that many of the proteins produced by genetically engineered bacteria are not identical to their eukaryotic counterparts. Although glycosylation affects the physical, chemical and biological nature of proteins, its pharmacological value in potential protein pharmaceuticals is not easy to predict. However, the development of mammalian cell culture methods for expressing recombinant DNA-derived glycoproteins will permit further studies in the field. 相似文献
35.
36.
Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content 总被引:4,自引:0,他引:4
Weselake RJ Shah S Tang M Quant PA Snyder CL Furukawa-Stoffer TL Zhu W Taylor DC Zou J Kumar A Hall L Laroche A Rakow G Raney P Moloney MM Harwood JL 《Journal of experimental botany》2008,59(13):3543-3549
Top-down control analysis (TDCA) is a useful tool for quantifying constraints on metabolic pathways that might be overcome by biotechnological approaches. Previous studies on lipid accumulation in oilseed rape have suggested that diacylglycerol acyltransferase (DGAT), which catalyses the final step in seed oil biosynthesis, might be an effective target for enhancing seed oil content. Here, increased seed oil content, increased DGAT activity, and reduced substrate:product ratio are demonstrated, as well as reduced flux control by complex lipid assembly, as determined by TDCA in Brassica napus (canola) lines which overexpress the gene encoding type-1 DGAT. Lines overexpressing DGAT1 also exhibited considerably enhanced seed oil content under drought conditions. These results support the use of TDCA in guiding the rational selection of molecular targets for oilseed modification. The most effective lines had a seed oil increase of 14%. Moreover, overexpression of DGAT1 under drought conditions reduced this environmental penalty on seed oil content. 相似文献
37.
Thomas M Davis Melanie E Shields Qian Zhang Denise Tombolato-Terzić Jeffrey L Bennetzen Ana C Pontaroli Hao Wang Qin Yao Phillip SanMiguel Kevin M Folta 《BMC plant biology》2010,10(1):81
Background
Strawberry (Fragaria spp.) is the familiar name of a group of economically important crop plants and wild relatives that also represent an emerging system for the study of gene and genome evolution. Its small stature, rapid seed-to-seed cycle, transformability and miniscule basic genome make strawberry an attractive system to study processes related to plant physiology, development and crop production; yet it lacks substantial genomics-level resources. This report addresses this deficiency by characterizing 0.71 Mbp of gene space from a diploid species (F. vesca). The twenty large genomic tracks (30-52 kb) captured as fosmid inserts comprise gene regions with roles in flowering, disease resistance, and metabolism. 相似文献38.
The Annual Bio-Ontologies meeting (http://www.cs.man.ac.uk/ stevens/meeting03/) has now been running for 6 consecutive years, as a special interest group (SIG) of the much larger ISMB conference. It met in Brisbane, Australia, this summer, the first time it was held outside North America or Europe. The bio-ontologies meeting is 1 day long and normally has around 100 attendees. This year there were many fewer, no doubt a result of the distance, global politics and SARS. The meeting consisted of a series of 30 min talks with no formal peer review or publication. Talks ranged in style from fairly formal and complete pieces of work, through works in progress, to the very informal and discursive. Each year's meeting has a theme and this year it was 'ontologies, and text processing'. There is a tendency for those submitting talks to ignore the theme completely, but this year's theme obviously struck a chord, as half the programme was about ontologies and text analysis (http://www.cs.man.ac.uk/ stevensr/meeting03/programme.html). Despite the smaller size of the meeting, the programme was particularly strong this year, meaning that the tension between allowing time for the many excellent talks, discussion and questions from the floor was particular keenly felt. A happy problem to have! 相似文献
39.
Many commonly used, structurally diverse, drugs block the human ether-a-go-go-related gene (hERG) K(+) channel to cause acquired long QT syndrome, which can lead to sudden death via lethal cardiac arrhythmias. This undesirable side effect is a major hurdle in the development of safe drugs. To gain insight about the structure of hERG and the nature of drug block we have produced structural models of the channel pore domain, into each of which we have docked a set of 20 hERG blockers. In the absence of an experimentally determined three-dimensional structure of hERG, each of the models was validated against site-directed mutagenesis data. First, hERG models were produced of the open and closed channel states, based on homology with the prokaryotic K(+) channel crystal structures. The modeled complexes were in partial agreement with the mutagenesis data. To improve agreement with mutagenesis data, a KcsA-based model was refined by rotating the four copies of the S6 transmembrane helix half a residue position toward the C-terminus, so as to place all residues known to be involved in drug binding in positions lining the central cavity. This model produces complexes that are consistent with mutagenesis data for smaller, but not larger, ligands. Larger ligands could be accommodated following refinement of this model by enlarging the cavity using the inherent flexibility about the glycine hinge (Gly648) in S6, to produce results consistent with the experimental data for the majority of ligands tested. 相似文献
40.
Melissa R. Christopherson Garret Suen Shanti Bramhacharya Kelsea A. Jewell Frank O. Aylward David Mead Phillip J. Brumm 《PloS one》2013,8(1)
Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484T. For comparative purposes, we also sequenced the genome of the aerobic cellulolytic “Cellvibrio gilvus” ATCC 13127T. An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that “Cellvibrio gilvus” belongs to the genus Cellulomonas. We thus propose to assign “Cellvibrio gilvus” to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482T showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies. 相似文献