首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3312篇
  免费   295篇
  国内免费   4篇
  3611篇
  2023年   13篇
  2022年   38篇
  2021年   50篇
  2020年   41篇
  2019年   54篇
  2018年   44篇
  2017年   52篇
  2016年   76篇
  2015年   124篇
  2014年   158篇
  2013年   170篇
  2012年   243篇
  2011年   297篇
  2010年   174篇
  2009年   139篇
  2008年   199篇
  2007年   232篇
  2006年   179篇
  2005年   190篇
  2004年   167篇
  2003年   165篇
  2002年   156篇
  2001年   37篇
  2000年   17篇
  1999年   38篇
  1998年   37篇
  1997年   26篇
  1996年   23篇
  1995年   21篇
  1994年   18篇
  1993年   34篇
  1992年   14篇
  1991年   25篇
  1990年   19篇
  1989年   14篇
  1988年   22篇
  1987年   15篇
  1986年   19篇
  1985年   22篇
  1984年   23篇
  1983年   18篇
  1982年   19篇
  1981年   29篇
  1980年   20篇
  1979年   15篇
  1977年   18篇
  1976年   13篇
  1975年   11篇
  1974年   16篇
  1973年   13篇
排序方式: 共有3611条查询结果,搜索用时 0 毫秒
271.
272.
Endosomal trafficking is regulated by the recruitment of effector proteins to phosphatidylinositol 3-phosphate [PtdIns(3)P] on early endosomes. At the plasma membrane, phosphatidylinositol-(3,4)-bisphosphate [PtdIns(3,4)P2] binds the pleckstrin homology (PH) domain-containing proteins Akt and TAPP1. Type Ialpha inositol polyphosphate 4-phosphatase (4-phosphatase) dephosphorylates PtdIns(3,4)P2, forming PtdIns(3)P, but its subcellular localization is unknown. We report here in quiescent cells, the 4-phosphatase colocalized with early and recycling endosomes. On growth factor stimulation, 4-phosphatase endosomal localization persisted, but in addition the 4-phosphatase localized at the plasma membrane. Overexpression of the 4-phosphatase in serum-stimulated cells increased cellular PtdIns(3)P levels and prevented wortmannin-induced endosomal dilatation. Furthermore, mouse embryonic fibroblasts from homozygous Weeble mice, which have a mutation in the type I 4-phosphatase, exhibited dilated early endosomes. 4-Phosphatase translocation to the plasma membrane upon growth factor stimulation inhibited the recruitment of the TAPP1 PH domain. The 4-phosphatase contains C2 domains, which bound PtdIns(3,4)P2, and C2-domain-deletion mutants lost PtdIns(3,4)P2 4-phosphatase activity, did not localize to endosomes or inhibit TAPP1 PH domain membrane recruitment. The 4-phosphatase therefore both generates and terminates phosphoinositide 3-kinase signals at distinct subcellular locations.  相似文献   
273.
Huntington disease (HD) is a devastating neurologic disorder that is characterized by abnormal expansion of a CAG nt repeat in the first exon of the huntingtin (htt) gene, producing a mutant protein with an elongated polyglutamine stretch. The presence of this mutant protein is correlated with the characteristic loss of striatal neurons and the clinical manifestation of HD. Currently there is no effective treatment for the associated cell death. The aim of this study was to evaluate an innovative strategy combining RNA interference (RNAi) and gene transfer via the nonviral Sleeping Beauty (SB) transposon system to down-regulate Htt expression. siRNA expression vectors were designed to target exons 1, 4, 6, and 62 of the human htt gene. Real-time RT-PCR and Western blot analysis were used to quantify Htt mRNA and protein levels, respectively, in human cell lines. The results indicated that selected siRNA constructs significantly decreased Htt mRNA and protein levels relative to controls. In addition, SB transposition of the siRNA constructs into the genome reduced long-term protein expression of Htt by approximately 90%. The combination of siRNA, the SB transposon, and an accurate transgenic mouse model may permit evaluation of this approach in preventing the pathogenesis associated with expression of mutant Htt.  相似文献   
274.
Various cellular signals initiate calcium entry into cells, and there is evidence that lipid rafts and caveolae may concentrate proteins that regulate transmembrane calcium fluxes. Here, using mice deficient in caveolin-1 (Cav-1) and Cav-1 knock-out reconstituted with endothelium-specific Cav-1, we show that Cav-1 is essential for calcium entry in endothelial cells and governs the localization and protein-protein interactions between transient receptor channels C4 and C1. Thus, Cav-1 is required for calcium entry in vascular endothelial cells and perhaps other specialized cell types containing caveolae.  相似文献   
275.
After birth, stem cells in the subventricular zone (SVZ) generate neuroblasts that migrate along the rostral migratory stream (RMS) to become interneurons in the olfactory bulb (OB). This migration is crucial for the proper integration of newborn neurons in a pre-existing synaptic network and is believed to play a key role in infant human brain development. Many regulators of neuroblast migration have been identified; however, still very little is known about the intracellular molecular mechanisms controlling this process. Here, we have investigated the function of drebrin, an actin-binding protein highly expressed in the RMS of the postnatal mammalian brain. Neuroblast migration was monitored both in culture and in brain slices obtained from electroporated mice by time-lapse spinning disk confocal microscopy. Depletion of drebrin using distinct RNAi approaches in early postnatal mice affects neuroblast morphology and impairs neuroblast migration and orientation in vitro and in vivo. Overexpression of drebrin also impairs migration along the RMS and affects the distribution of neuroblasts at their final destination, the OB. Drebrin phosphorylation on Ser142 by Cyclin-dependent kinase 5 (Cdk5) has been recently shown to regulate F-actin-microtubule coupling in neuronal growth cones. We also investigated the functional significance of this phosphorylation in RMS neuroblasts using in vivo postnatal electroporation of phosphomimetic (S142D) or non-phosphorylatable (S142A) drebrin in the SVZ of mouse pups. Preventing or mimicking phosphorylation of S142 in vivo caused similar effects on neuroblast dynamics, leading to aberrant neuroblast branching. We conclude that drebrin is necessary for efficient migration of SVZ-derived neuroblasts and propose that regulated phosphorylation of drebrin on S142 maintains leading process stability for polarized migration along the RMS, thus ensuring proper neurogenesis.  相似文献   
276.
A hallmark of ischemic/reperfusion injury is a change in subunit composition of synaptic 2‐amino‐3‐(3‐hydroxy‐5‐methylisoazol‐4‐yl)propionic acid receptors (AMPARs). This change in AMPAR subunit composition leads to an increase in surface expression of GluA2‐lacking Ca2+/Zn2+ permeable AMPARs. These GluA2‐lacking AMPARs play a key role in promoting delayed neuronal death following ischemic injury. At present, the mechanism(s) responsible for the ischemia/reperfusion‐induced subunit composition switch and degradation of the GluA2 subunit remain unclear. In this study, we investigated the role of NADPH oxidase, and its importance in mediating endocytosis and subsequent degradation of the GluA2 AMPAR subunit in adult rat hippocampal slices subjected to oxygen–glucose deprivation/reperfusion (OGD/R) injury. In hippocampal slices pre‐treated with the NADPH oxidase inhibitor apocynin attenuated OGD/R‐mediated sequestration of GluA2 and GluA1 as well as prevent the degradation of GluA2. We provide compelling evidence that NADPH oxidase mediated sequestration of GluA1‐ and GluA2‐ involved activation of p38 MAPK. Furthermore, we demonstrate that inhibition of NADPH oxidase blunts the OGD/R‐induced association of GluA2 with protein interacting with C kinase‐1. In summary, this study identifies a novel mechanism that may underlie the ischemia/reperfusion‐induced AMPAR subunit composition switch and a potential therapeutic target.

  相似文献   

277.
Nowadays, proteomics is recognized as one of the fastest growing tools in many areas of research. This is especially true for the study of Saccharomyces cerevisiae, as it is considered to be a model organism for eukaryotic cells. Proteomic analysis provides an insight into global protein expressions from identification to quantitation, from localization to function, and from individual to network systems. Moreover, many methods for identification and quantitation of proteins based on tandem mass spectrometry workflows have recently been developed and widely applied in S. cerevisiae. The current methods and issues in the proteomic analysis of S. cerevisiae are reviewed here.  相似文献   
278.
279.
North African odonates are facing conservation challenges, not only by increased degradation and loss of habitat, but also by having poorly understood taxonomy. Coenagrion puella is a widely distributed damselfly but there is debate about the taxonomic status of North African populations, where the species is very rare. We evaluate the genetic distinctiveness of North African C. puella using mitochondrial and nuclear genetic markers. We found a clear genetic differentiation between North African and European populations (3.4 % mtDNA) and a lack of shared haplotypes between individuals from the two continents. These results suggest that the damselfly C. puella comprises two genetically distinct phylogenetic lineages: one in Europe and one in North Africa, and re-invigorate the debate on the validity of the North African endemic C. puella kocheri. We propose that these two lineages of C. puella should be managed as distinct molecular operational taxonomic units. More generally, this study reinforces the important role of North Africa as centre of speciation and differentiation for odonates, and highlights the relevance of incorporating genetic data to understand the evolutionary history and taxonomy for effective biodiversity conservation.  相似文献   
280.
For many coral species, the obligate association with phylogenetically diverse algal endosymbiont species is dynamic in time and space. Here, we used controlled laboratory inoculations of newly settled, aposymbiotic corals (Orbicella faveolata) with two cultured species of algal symbiont (Symbiodinium microadriaticum and S. minutum) to examine the role of symbiont identity on growth, survivorship, and thermal tolerance of the coral holobiont. We evaluated these data in the context of Symbiodinium photophysiology for 9 months post‐settlement and also during a 5‐d period of elevated temperatures Our data show that recruits that were inoculated with S. minutum grew significantly slower than those inoculated with S. microadriaticum (occasionally co‐occurring with S. minutum), but that there was no difference in survivorship of O. faveolata polyps infected with Symbiodinium. However, photophysiological metrics (?Fv/F′m, the efficiency with which available light is used to drive photosynthesis and α, the maximum light utilization coefficient) were higher in those slower growing recruits containing S. minutum. These findings suggest that light use (i.e., photophysiology) and carbon acquisition by the coral host (i.e., host growth) are decoupled, but did not distinguish the source of this difference. Neither Symbiodinium treatment demonstrated a significant negative effect of a 5‐d exposure to temperatures as high as 32°C under low light conditions similar to those measured at settlement habitats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号