首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   15篇
  2023年   1篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2015年   2篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   13篇
  2010年   4篇
  2009年   9篇
  2008年   3篇
  2007年   2篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   3篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1965年   2篇
排序方式: 共有129条查询结果,搜索用时 15 毫秒
61.
62.
Extracting DNA directly from micro-organisms living in soil is a crucial step for the molecular analysis of soil microbial communities. However, the use of a plethora of different soil DNA extraction protocols, each with its own bias, makes accurate data comparison difficult. To overcome this problem, a method for soil DNA extraction was proposed to the International Organization for Standardization (ISO) in 2006. This method was evaluated by 13 independent European laboratories actively participating in national and international ring tests. The reproducibility of the standardized method for molecular analyses was evaluated by comparing the amount of DNA extracted, as well as the abundance and genetic structure of the total bacterial community in the DNA extracted from 12 different soils by the 13 laboratories. High quality DNA was successfully extracted from all 12 soils, despite different physical and chemical characteristics and a range of origins from arable soils, through forests to industrial sites. Quantification of the 16S rRNA gene abundances by real time PCR and analysis of the total bacterial community structure by automated ribosomal intergenic spacer analysis (A-RISA) showed acceptable to good levels of reproducibility. Based on the results of both ring-tests, the method was unanimously approved by the ISO as an international standard method and the normative protocol will now be disseminated within the scientific community. Standardization of a soil DNA extraction method will improve data comparison, facilitating our understanding of soil microbial diversity and soil quality monitoring.  相似文献   
63.
A geostatistical approach using replicated grassland sites (10 m × 10 m) was applied to investigate the influence of grassland management, i.e. unfertilized pastures and fertilized mown meadows representing low and high land-use intensity (LUI), on soil biogeochemical properties and spatial distributions of ammonia-oxidizing and denitrifying microorganisms in soil. Spatial autocorrelations of the different N-cycling communities ranged between 1.4 and 7.6 m for ammonia oxidizers and from 0.3 m for nosZ-type denitrifiers to scales >14 m for nirK-type denitrifiers. The spatial heterogeneity of ammonia oxidizers and nirS-type denitrifiers increased in high LUI, but decreased for biogeochemical properties, suggesting that biotic and/or abiotic factors other than those measured are driving the spatial distribution of these microorganisms at the plot scale. Furthermore, ammonia oxidizers (amoA ammonia-oxidizing archaea and amoA ammonia-oxidizing bacteria) and nitrate reducers (napA and narG) showed spatial coexistence, whereas niche partitioning was found between nirK- and nirS-type denitrifiers. Together, our results indicate that spatial analysis is a useful tool to characterize the distribution of different functional microbial guilds with respect to soil biogeochemical properties and land-use management. In addition, spatial analyses allowed us to identify distinct distribution ranges indicating the coexistence or niche partitioning of N-cycling communities in grassland soil.  相似文献   
64.
In this study, the structure and activity of the nitrate-reducers community were analysed in bulk and rhizospheric soils from three different non-isogenic transgenic cultivars of maize (two Bacillus thuringiensis maize and one glyphosate-resistant maize) in a long-term field experiment. DNA was extracted from both rhizospheric and non-rhizospheric soil sampled at three different development stages of the plants and amplified using primers targeting the genes encoding the␣membrane-bound nitrate reductase (narG). Nitrate-reducers community structure was analysed by generating fingerprints and sequencing of narG clone libraries. The season seems to be the most important factor controlling the genetic structure of the nitrate-reducers community. Smaller differences in the narG fingerprints were also observed between bulk and rhizospheric soils suggesting that presence of maize roots was the second important factor affecting the structure of this functional community. Similarly, a rhizosphere effect was observed on the nitrate reductase activity with a 2–3-fold increased in the rhizospheric soil compared to the non-rhizospheric soil. However, for both structure and activity of the nitrate-reducers community, no effect of the maize cultivar was observed. This study suggests that the effect of the cultivar and/or of the agricultural practices associated with the cultivation of transgenic maize is not significant compared to the effect of other environmental factors.  相似文献   
65.
The spatial arrangement of the F protein spike in the Sendai virus was studied after purifying the protein and reconstituting it in lipid vesicles (Sechoy, O., Philippot, J. R., and Bienvenue, A. (1986) Biochim. Biophys. Acta 857, 1-12). The different components of the F protein spikes were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under various conditions of treatment, i.e. at different temperatures and sodium dodecyl sulfate concentrations, using different detergents for F protein solubilization (Triton X-100 and octyl glucoside), by fast protein liquid chromatography analysis, and by chemical cross-linking between subunits with bifunctional agents such as dimethyl adipimidate and dithiobis(succinimidyl propionate). The F protein spike appeared to be a structurally stable complex, composed of a noncovalent association of four homooligomers, each consisting of two peptides, F1 and F2, linked by a disulfide bond. Octyl glucoside and Triton X-100 solubilized the F protein, preserving the tetramer, which is probably the native form. Using chemical cross-linking, a covalent bond was formed between two monomers. We hypothesize that the tetrameric form of the F protein in its native form (spike) consists of two identical dimers that can be chemically cross-linked in a stable complex.  相似文献   
66.
To determine to which extent root-derived carbon contributes to the effects of plants on nitrate reducers and denitrifiers, four solutions containing different proportions of sugar, organic acids and amino acids mimicking maize root exudates were added daily to soil microcosms at a concentration of 150 microg C g(-1) of soil. Water-amended soils were used as controls. After 1 month, the size and structure of the nitrate reducer and denitrifier communities were analysed using the narG and napA, and the nirK, nirS and nosZ genes as molecular markers respectively. Addition of artificial root exudates (ARE) did not strongly affect the structure or the density of nitrate reducer and denitrifier communities whereas potential nitrate reductase and denitrification activities were stimulated by the addition of root exudates. An effect of ARE composition was also observed on N(2)O production with an N(2)O:(N(2)O + N(2)) ratio of 0.3 in microcosms amended with ARE containing 80% of sugar and of 1 in microcosms amended with ARE containing 40% of sugar. Our study indicated that ARE stimulated nitrate reduction or denitrification activity with increases in the range of those observed with the whole plant. Furthermore, we demonstrated that the composition of the ARE affected the nature of the end-product of denitrification and could thus have a putative impact on greenhouse gas emissions.  相似文献   
67.
We report here a molecular survey based on 16S rRNA genes of the bacterial diversity found in two deep-sea vent niches at the Mid-Atlantic Ridge: hydrothermal sediment (Rainbow site), and microcolonizers made of three different substrates (organic-rich, iron-rich and pumice) that were exposed for 15 days to a vent emission. Bacterial diversity in sediment samples was scattered through many bacterial divisions. The most abundant and diverse environmental sequences (phylotypes) in our libraries corresponded to the Gammaproteobacteria, followed by the Acidobacteria. We detected members of all the subdivisions within the Proteobacteria. Myxobacterial lineages were the most represented within the delta subdivision. Phylotypes ascribing to the Cytophaga-Flavobacterium-Bacteroides, Planctomycetales, high and low G + C Gram-positives, Nitrospirae, and the candidate division TM7 were also identified. Compared to this broad taxonomic coverage, microcolonizers were almost exclusively colonized by epsilonproteobacteria, although these exhibited considerable morphological and phylogenetic in-group diversity. No specificity for any of the substrates tested was seen. This observation further supports the idea of the ecological dominance of epsilonproteobacteria in the fluid-seawater interface environment. Because oxidation of reduced S species and/or sulphur-reduction is thought to be essential for their energetic metabolism in these areas, we mapped different oxidation states of S in individual bacterial filaments from the iron-rich microcolonizer. For this, we used high-resolution, non-destructive synchrotron micro-X-ray Absorption Near-Edge Spectroscopy (micro-XANES), which revealed the co-existence of different S oxidation states, from sulphide to sulphate, at the level of individual cells. This suggests that these cells were metabolizing sulphur in situ.  相似文献   
68.
Fluorescent pseudomonads have evolved an efficient strategy of iron uptake based on the synthesis of the siderophore pyoverdine and its relevant outer membrane receptor. The possible implication of pyoverdine synthesis and uptake on the ecological competence of a model strain (Pseudomonas fluorescens C7R12) in soil habitats was evaluated using a pyoverdine minus mutant (PL1) obtained by random insertion of the transposon Tn5. The Tn5 flanking DNA was amplified by inverse PCR and sequenced. The nucleotide sequence was found to show a high level of identity with pvsB, a pyoverdine synthetase. As expected, the mutant PL1 was significantly more susceptible to iron starvation than the wild-type strain despite its ability to produce another unknown siderophore. As with the wild-type strain, the mutant PL1 was able to incorporate the wild-type pyoverdine and five pyoverdines of foreign origin, but at a significantly lower rate despite the similarity of the outer membrane protein patterns of the two strains. The survival kinetics of the wild-type and of the pyoverdine minus mutant, in bulk and rhizosphere soil, were compared under gnotobiotic and non-gnotobiotic conditions. In gnotobiotic model systems, both strains, when inoculated separately, showed a similar survival in soil and rhizosphere, suggesting that iron was not a limiting factor. In contrast, when inoculated together, the bacterial competition was favorable to the pyoverdine producer C7R12. The efficient fitness of PL1 in the presence of the indigenous microflora, even when coinoculated with C7R12, is assumed to be related to its ability to uptake heterologous pyoverdines. Altogether, these results suggest that pyoverdine-mediated iron uptake is involved in the ecological competence of the strain P. fluorescens C7R12.  相似文献   
69.
D. Bru  A. Sarr    L. Philippot 《Applied microbiology》2007,73(18):5971-5974
Dissimilatory nitrate reduction is catalyzed by a membrane-bound and a periplasmic nitrate reductase. We set up a real-time PCR assay to quantify these two enzymes, using the narG and napA genes, encoding the catalytic subunits of the two types of nitrate reductases, as molecular markers. The narG and napA gene copy numbers in DNA extracted from 18 different environments showed high variations, with most numbers ranging from 2 × 102 to 6.8 × 104 copies per ng of DNA. This study provides evidence that, in soil samples, the number of proteobacteria carrying the napA gene is often as high as that of proteobacteria carrying the narG gene. The high correlation observed between narG and napA gene copy numbers in soils suggests that the ecological roles of the corresponding enzymes might be linked.  相似文献   
70.
The effects of elevated atmospheric CO2 concentration on growth of forest tree species are difficult to predict because practical limitations restrict experiments to much shorter than the average life-span of a tree. Long-term, process-based computer models must be used to extrapolate from shorter-term experiments. A key problem is to ensure a strong flow of information between experiments and models. In this study, meta-analysis techniques were used to summarize a suite of photosynthetic model parameters obtained from 15 field-based elevated [CO2] experiments on European forest tree species. The parameters studied are commonly used in modelling photosynthesis, and include observed light-saturated photosynthetic rates (Amax), the potential electron transport rate (Jmax), the maximum Rubisco activity (Vcmax) and leaf nitrogen concentration on mass (Nm) and area (Na) bases. Across all experiments, light-saturated photosynthesis was strongly stimulated by growth in elevated [CO2]. However, significant down-regulation of photosynthesis was also observed; when measured at the same CO2 concentration, photosynthesis was reduced by 10–20%. The underlying biochemistry of photosynthesis was affected, as shown by a down-regulation of the parameters Jmax and Vcmax of the order of 10%. This reduction in Jmax and Vcmax was linked to the effects of elevated [CO2] on leaf nitrogen concentration. It was concluded that the current model is adequate to model photosynthesis in elevated [CO2]. Tables of model parameter values for different European forest species are given.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号