首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20106篇
  免费   1619篇
  国内免费   17篇
  2023年   57篇
  2022年   120篇
  2021年   263篇
  2020年   159篇
  2019年   194篇
  2018年   287篇
  2017年   267篇
  2016年   457篇
  2015年   736篇
  2014年   849篇
  2013年   1102篇
  2012年   1364篇
  2011年   1370篇
  2010年   866篇
  2009年   854篇
  2008年   1140篇
  2007年   1273篇
  2006年   1210篇
  2005年   1128篇
  2004年   1114篇
  2003年   1081篇
  2002年   1088篇
  2001年   245篇
  2000年   207篇
  1999年   287篇
  1998年   355篇
  1997年   254篇
  1996年   229篇
  1995年   234篇
  1994年   209篇
  1993年   226篇
  1992年   257篇
  1991年   167篇
  1990年   187篇
  1989年   145篇
  1988年   130篇
  1987年   113篇
  1986年   101篇
  1985年   136篇
  1984年   128篇
  1983年   101篇
  1982年   133篇
  1981年   110篇
  1980年   97篇
  1979年   93篇
  1978年   69篇
  1977年   97篇
  1976年   84篇
  1974年   54篇
  1973年   61篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
992.
Tocochromanols (tocopherols and tocotrienols), collectively known as vitamin E, are essential antioxidant components of both human and animal diets. Because of their potential health benefits, there is a considerable interest in plants with increased or customized vitamin E content. Here, we have explored a new strategy to reach this goal. In plants, phenylalanine is the precursor of a myriad of secondary compounds termed phenylpropanoids. In contrast, much less carbon is incorporated into tyrosine that provides p-hydroxyphenylpyruvate and homogentisate, the aromatic precursors of vitamin E. Therefore, we intended to increase the flux of these two compounds by deriving their synthesis directly at the level of prephenate. This was achieved by the expression of the yeast (Saccharomyces cerevisiae) prephenate dehydrogenase gene in tobacco (Nicotiana tabacum) plants that already overexpress the Arabidopsis p-hydroxyphenylpyruvate dioxygenase coding sequence. A massive accumulation of tocotrienols was observed in leaves. These molecules, which were undetectable in wild-type leaves, became the major forms of vitamin E in the leaves of the transgenic lines. An increased resistance of the transgenic plants toward the herbicidal p-hydroxyphenylpyruvate dioxygenase inhibitor diketonitril was also observed. This work demonstrates that the synthesis of p-hydroxyphenylpyruvate is a limiting step for the accumulation of vitamin E in plants.  相似文献   
993.
994.
We investigated the molecular bases for resistance to several classes of herbicides that bind tubulins in green foxtail (Setaria viridis L. Beauv.). We identified two alpha- and two beta-tubulin genes in green foxtail. Sequence comparison between resistant and sensitive plants revealed two mutations, a leucine-to-phenylalanine change at position 136 and a threonine-to-isoleucine change at position 239, in the gene encoding alpha2-tubulin. Association of mutation at position 239 with herbicide resistance was demonstrated using near-isogenic lines derived from interspecific pairings between green foxtail and foxtail millet (Setaria italica L. Beauv.), and herbicide sensitivity bioassays combined with allele-specific PCR-mediated genotyping. Association of mutation at position 136 with herbicide resistance was demonstrated using herbicide sensitivity bioassays combined with allele-specific PCR-mediated genotyping. Both mutations were associated with recessive cross resistance to dinitroanilines and benzoic acids, no change in sensitivity to benzamides, and hypersensitivity to carbamates. Using three-dimensional modeling, we found that the two mutations are adjacent and located into a region involved in tubulin dimer-dimer contact. Comparison of three-dimensional alpha-tubulin models for organisms with contrasted sensitivity to tubulin-binding herbicides enabled us to propose that residue 253 and the vicinity of the side chain of residue 251 are critical determinants for the differences in herbicide sensitivity observed between organisms, and that positions 16, 24, 136, 239, 252, and 268 are involved in modulating sensitivity to these herbicides.  相似文献   
995.
The oxygenated derivatives of fatty acids, known as oxylipins, are pivotal signaling molecules in animals and terrestrial plants. In animal systems, eicosanoids regulate cell differentiation, immune responses, and homeostasis. In contrast, terrestrial plants use derivatives of C18 and C16 fatty acids as developmental or defense hormones. Marine algae have emerged early in the evolution of eukaryotes as several distinct phyla, independent from the animal and green-plant lineages. The occurrence of oxylipins of the eicosanoid family is well documented in marine red algae, but their biological roles remain an enigma. Here we address the hypothesis that they are involved with the defense mechanisms of the red alga Chondrus crispus. By investigating its association with a green algal endophyte Acrochaete operculata, which becomes invasive in the diploid generation of this red alga, we showed that (1) when challenged by pathogen extracts, the resistant haploid phase of C. crispus produced both C20 and C18 oxylipins, (2) elicitation with pathogen extracts or methyl jasmonate activated the metabolism of C20 and C18 polyunsaturated fatty acids to generate hydroperoxides and cyclopentenones such as prostaglandins and jasmonates, and (3) C20 and C18 hydroperoxides as well as methyl jasmonate did induce shikimate dehydrogenase and Phe ammonialyase activities in C. crispus and conferred an induced resistance to the diploid phase, while inhibitors of fatty acid oxidation reduced the natural resistance of the haploid generation. The dual nature of oxylipin metabolism in this alga suggests that early eukaryotes featured both animal- (eicosanoids) and plant-like (octadecanoids) oxylipins as essential components of innate immunity mechanisms.  相似文献   
996.
997.
In order to promote genome research on coffee trees, one of the most important tropical crops, a bacterial artificial chromosome (BAC) library of the coffee allotetraploid species, Coffea arabica, was constructed. The variety IAPAR 59, which is widely distributed in Latin America and exhibits a fair level of resistance to several pathogens, was chosen. High-efficiency BAC cloning of the high molecular weight genomic DNA partially digested by HindIII was achieved. In total, the library contains 88,813 clones with an average insert size of 130 kb, and represents approximately eight C. arabica dihaploid genome equivalents. One original feature of this library is that it can be divided into four sublibraries with mean insert sizes of 96, 130, 183 and 210 kb. Characterisation of the library showed that less than 4.5% of the clones contained organelle DNA. Furthermore, this library is representative and shows good genome coverage, as established by hybridisation screening of high-density filters using a number of nuclear probes distributed across the allotetraploid genome. This Arabica BAC library, the first large-insert DNA library so far constructed for the genus Coffea, is well-suited for many applications in genome research, including physical mapping, map-based cloning, functional and comparative genomics as well as polyploid genome analyses.Communicated by J.W. Snape  相似文献   
998.
Cilia and flagella are microtubule-based structures nucleated by modified centrioles termed basal bodies. These biochemically complex organelles have more than 250 and 150 polypeptides, respectively. To identify the proteins involved in ciliary and basal body biogenesis and function, we undertook a comparative genomics approach that subtracted the nonflagellated proteome of Arabidopsis from the shared proteome of the ciliated/flagellated organisms Chlamydomonas and human. We identified 688 genes that are present exclusively in organisms with flagella and basal bodies and validated these data through a series of in silico, in vitro, and in vivo studies. We then applied this resource to the study of human ciliation disorders and have identified BBS5, a novel gene for Bardet-Biedl syndrome. We show that this novel protein localizes to basal bodies in mouse and C. elegans, is under the regulatory control of daf-19, and is necessary for the generation of both cilia and flagella.  相似文献   
999.
Under conditions of nutrient deprivation, the Gram positive soil bacterium Bacillus subtilis can abandon vegetative growth and form a dormant, environmentally-resistant spore instead. The decision to either divide or sporulate is controlled by a large and complex genetic regulatory network integrating various environmental, cell-cycle, and metabolic signals. Although sporulation in B. subtilis is one of the best-understood model systems for prokaryotic development, very little quantitative data on kinetic parameters and molecular concentrations are available. A qualitative simulation method is used to model the sporulation network and simulate the response of the cell to nutrient deprivation. Using this method, we have been able to reproduce essential features of the choice between vegetative growth and sporulation, in particular the role played by competing positive and negative feedback loops.  相似文献   
1000.
phi-0303 is a temperate bacteriophage isolated from Lactobacillus helveticus CNRZ 303 strain after mitomycin C induction. In this work, the gene coding for a lytic protein of this bacteriophage was cloned using a library of phi-0303 in Escherichia coli DH5alpha. The lytic activity was detected by its expression, using whole cells of the sensitive strain L. helveticus CNRZ 892 as the substrate. The lysin gene was within a 4.1-kb DNA fragment of phi-0303 containing six open reading frames (ORFs) and two truncated ORFs. No sequence homology with holin genes was found within the cloned fragment. An integrase-encoding gene was also present in the fragment, but it was transcribed in a direction opposite that of the lysin gene. The lysin-encoding lys gene was verified by PCR amplification from the total phage DNA and subcloned. The lys gene is a 1,122-bp sequence encoding a protein of 373 amino acids (Mur-LH), whose product had a deduced molecular mass of 40,207 Da. Comparisons with sequences in sequence databases showed homology with numerous endolysins of other bacteriophages. Mur-LH was expressed in E. coli BL21, and by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with L. helveticus CNRZ 892 as the substrate, the recombinant protein showed an apparent molecular mass of 40 kDa. The N-terminal sequence of the protein confirmed the start codon. Hydrolysis of cell walls of L. helveticus CNRZ 303 by the endolysin and biochemical analysis of the residues produced demonstrated that Mur-LH has N-acetylmuramidase activity. Last, the endolysin exhibited a broad spectrum of lytic activity, as it was active on different species, mainly thermophilic lactobacilli but also lactococci, pediococci, Bacillus subtilis, Brevibacterium linens, and Enterococcus faecium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号