首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9670篇
  免费   790篇
  国内免费   9篇
  2023年   42篇
  2022年   79篇
  2021年   170篇
  2020年   111篇
  2019年   109篇
  2018年   160篇
  2017年   128篇
  2016年   269篇
  2015年   411篇
  2014年   499篇
  2013年   624篇
  2012年   773篇
  2011年   757篇
  2010年   449篇
  2009年   440篇
  2008年   595篇
  2007年   644篇
  2006年   609篇
  2005年   527篇
  2004年   534篇
  2003年   511篇
  2002年   508篇
  2001年   108篇
  2000年   80篇
  1999年   115篇
  1998年   147篇
  1997年   103篇
  1996年   94篇
  1995年   104篇
  1994年   87篇
  1993年   82篇
  1992年   89篇
  1991年   39篇
  1990年   48篇
  1989年   34篇
  1988年   37篇
  1987年   23篇
  1986年   33篇
  1985年   31篇
  1984年   27篇
  1983年   27篇
  1982年   37篇
  1981年   29篇
  1980年   22篇
  1979年   19篇
  1978年   11篇
  1977年   24篇
  1976年   17篇
  1974年   8篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Throughout the living world, genetic recombination and nucleotide substitution are the primary processes that create the genetic variation upon which natural selection acts. Just as analyses of substitution patterns can reveal a great deal about evolution, so too can analyses of recombination. Evidence of genetic recombination within the genomes of apparently asexual species can equate with evidence of cryptic sexuality. In sexually reproducing species, nonrandom patterns of sequence exchange can provide direct evidence of population subdivisions that prevent certain individuals from mating. Although an interesting topic in its own right, an important reason for analysing recombination is to account for its potentially disruptive influences on various phylogenetic-based molecular evolution analyses. Specifically, the evolutionary histories of recombinant sequences cannot be accurately described by standard bifurcating phylogenetic trees. Taking recombination into account can therefore be pivotal to the success of selection, molecular clock and various other analyses that require adequate modelling of shared ancestry and draw increased power from accurately inferred phylogenetic trees. Here, we review various computational approaches to studying recombination and provide guidelines both on how to gain insights into this important evolutionary process and on how it can be properly accounted for during molecular evolution studies.  相似文献   
992.
Spontaneous isoaspartyl formation from aspartyl dehydration or asparaginyl deamidation is a major source of modifications in protein structures. In cells, these conformational changes could be reverted by the protein L-isoaspartyl methyltransferase (PIMT) repair enzyme that converts the isoaspartyl residues into aspartyl. The physiological importance of this metabolism has been recently illustrated in plants. Recent developments allowing peptide isomer identification and quantification at the proteome scale are portrayed. The relevance of these new proteomic approaches based on 2-D electrophoresis or electron capture dissociation analysis methods was initially documented in mammals. Extended use to Arabidopsis model systems is promising for the discovery of controlling mechanisms induced by these particular post-translational modifications and their biological role in plants.  相似文献   
993.
Poplar under drought: comparison of leaf and cambial proteomic responses   总被引:1,自引:0,他引:1  
The forest ecosystem is of particular importance from an economic and ecological perspective. However, the stress physiology of trees, perennial and woody plants, is far from being fully understood. For that purpose, poplar plants were exposed to drought; the plants exhibited commonly reported drought stress traits in the different plant tissues. Leafy rooted cuttings of poplar were investigated through a proteomic approach in order to compare the water constraint response of two plant tissues, namely leaf and cambium. Sampling was realized during the drought period at 2 time points with increased drought intensity and 7 days after rewatering. Our data show that there is a difference in the moment of response to the water constraint between the two tissues, cambium being affected later than leaves. In leaves, drought induced a decrease in rubisco content, and an increase in the abundance of light harvesting complex proteins as well as changes in membrane-related proteins. In the cambial tissue, the salient proteome pattern change was the decrease of multiple proteins identified as bark storage proteins. After rewatering, almost all changes in cambial proteome disappeared whereas a significant number of leaf proteins appeared to be differentially regulated only during the recovery from drought.  相似文献   
994.
The button mushroom Agaricus bisporus commercially cultivated requires 16-19 °C during the fruiting period. Wild strains are also present in natural habitat, and in light of their wide range of geographic distribution reported, from boreal region to tropical region, questions on the development adaptation to temperature arose. Isolates from various geographic areas were screened for their ability to fruit at higher temperature (FHT ability) than commercial cultivars. The FHT trait discriminated at the varietal rank. Agaricus bisporus var. eurotetrasporus was unable to develop any sporophores whilst A. bisporus var. burnettii adapted perfectly to 25 °C for fruiting, suggesting that the FHT ability is a fixed trait in these varieties. In contrast, FHT ability of A. bisporus var. bisporus appeared variable and correlated neither with climate/microclimate nor with habitat. However, FHT ability taken as a whole appeared higher in North American populations than in European ones. Some A. bisporus var. bisporus isolates revealed a good potential for cultivation at 25 °C.  相似文献   
995.

Background

Highly parallel analysis of gene expression has recently been used to identify gene sets or ‘signatures’ to improve patient diagnosis and risk stratification. Once a signature is generated, traditional statistical testing is used to evaluate its prognostic performance. However, due to the dimensionality of microarrays, this can lead to false interpretation of these signatures.

Principal Findings

A method was developed to test batches of a user-specified number of randomly chosen signatures in patient microarray datasets. The percentage of random generated signatures yielding prognostic value was assessed using ROC analysis by calculating the area under the curve (AUC) in six public available cancer patient microarray datasets. We found that a signature consisting of randomly selected genes has an average 10% chance of reaching significance when assessed in a single dataset, but can range from 1% to ∼40% depending on the dataset in question. Increasing the number of validation datasets markedly reduces this number.

Conclusions

We have shown that the use of an arbitrary cut-off value for evaluation of signature significance is not suitable for this type of research, but should be defined for each dataset separately. Our method can be used to establish and evaluate signature performance of any derived gene signature in a dataset by comparing its performance to thousands of randomly generated signatures. It will be of most interest for cases where few data are available and testing in multiple datasets is limited.  相似文献   
996.
997.
A phase 2a RTS,S/AS malaria vaccine trial, conducted previously at the Walter Reed Army Institute of Research, conferred sterile immunity against a primary challenge with infectious sporozoites in 40% of the 80 subjects enrolled in the study. The frequency of Plasmodium falciparum circumsporozoite protein (CSP)-specific CD4(+) T cells was significantly higher in protected subjects as compared to non-protected subjects. Intrigued by these unique vaccine-related correlates of protection, in the present study we asked whether RTS,S also induced effector/effector memory (T(E/EM)) and/or central memory (T(CM)) CD4(+) T cells and whether one or both of these sub-populations is the primary source of cytokine production. We showed for the first time that PBMC from malaria-non-exposed RTS,S-immunized subjects contain both T(E/EM) and T(CM) cells that generate strong IL-2 responses following re-stimulation in vitro with CSP peptides. Moreover, both the frequencies and the total numbers of IL-2-producing CD4(+) T(E/EM) cells and of CD4(+) T(CM) cells from protected subjects were significantly higher than those from non-protected subjects. We also demonstrated for the first time that there is a strong association between the frequency of CSP peptide-reactive CD4(+) T cells producing IL-2 and the titers of CSP-specific antibodies in the same individual, suggesting that IL-2 may be acting as a growth factor for follicular Th cells and/or B cells. The frequencies of CSP peptide-reactive, TNF-α-producing CD4(+) T(E/EM) cells and of CD4(+) T(E/EM) cells secreting both IL-2 and TNF-α were also shown to be higher in protected vs. non-protected individuals. We have, therefore, demonstrated that in addition to TNF-α, IL-2 is also a significant contributing factor to RTS,S/AS vaccine induced immunity and that both T(E/EM) and T(CM) cells are major producers of IL-2.  相似文献   
998.
999.
The Ralstonia solanacearum species complex includes R. solanacearum, R. syzygii, and the Blood Disease Bacterium (BDB). All colonize plant xylem vessels and cause wilt diseases, but with significant biological differences. R. solanacearum is a soilborne bacterium that infects the roots of a broad range of plants. R. syzygii causes Sumatra disease of clove trees and is actively transmitted by cercopoid insects. BDB is also pathogenic to a single host, banana, and is transmitted by pollinating insects. Sequencing and DNA-DNA hybridization studies indicated that despite their phenotypic differences, these three plant pathogens are actually very closely related, falling into the Phylotype IV subgroup of the R. solanacearum species complex. To better understand the relationships among these bacteria, we sequenced and annotated the genomes of R. syzygii strain R24 and BDB strain R229. These genomes were compared to strain PSI07, a closely related Phylotype IV tomato isolate of R. solanacearum, and to five additional R. solanacearum genomes. Whole-genome comparisons confirmed previous phylogenetic results: the three phylotype IV strains share more and larger syntenic regions with each other than with other R. solanacearum strains. Furthermore, the genetic distances between strains, assessed by an in-silico equivalent of DNA-DNA hybridization, unambiguously showed that phylotype IV strains of BDB, R. syzygii and R. solanacearum form one genomic species. Based on these comprehensive data we propose a revision of the taxonomy of the R. solanacearum species complex. The BDB and R. syzygii genomes encoded no obvious unique metabolic capacities and contained no evidence of horizontal gene transfer from bacteria occupying similar niches. Genes specific to R. syzygii and BDB were almost all of unknown function or extrachromosomal origin. Thus, the pathogenic life-styles of these organisms are more probably due to ecological adaptation and genomic convergence during vertical evolution than to the acquisition of DNA by horizontal transfer.  相似文献   
1000.
Self/non‐self discrimination is a fundamental requirement of life. Endogenous peptides presented by major histocompatibility complex class I (MHC I) molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) are collectively referred to as the immunopeptidome. From a systems‐level perspective, very little is known about the origin, composition and plasticity of the immunopeptidome. Here, we show that the immunopeptidome, and therefore the nature of the immune self, is plastic and moulded by cellular metabolic activity. By using a quantitative high‐throughput mass spectrometry‐based approach, we found that altering cellular metabolism via the inhibition of the mammalian target of rapamycin results in dynamic changes in the cell surface MIPs landscape. Moreover, we provide systems‐level evidence that the immunopeptidome projects at the cell surface a representation of biochemical networks and metabolic events regulated at multiple levels inside the cell. Our findings open up new perspectives in systems immunology and predictive biology. Indeed, predicting variations in the immunopeptidome in response to cell‐intrinsic and ‐extrinsic factors could be relevant to the rational design of immunotherapeutic interventions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号