首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10686篇
  免费   897篇
  国内免费   9篇
  2023年   46篇
  2022年   66篇
  2021年   183篇
  2020年   123篇
  2019年   123篇
  2018年   171篇
  2017年   136篇
  2016年   286篇
  2015年   447篇
  2014年   537篇
  2013年   660篇
  2012年   817篇
  2011年   803篇
  2010年   482篇
  2009年   468篇
  2008年   641篇
  2007年   685篇
  2006年   645篇
  2005年   563篇
  2004年   568篇
  2003年   548篇
  2002年   547篇
  2001年   147篇
  2000年   117篇
  1999年   153篇
  1998年   164篇
  1997年   117篇
  1996年   110篇
  1995年   121篇
  1994年   99篇
  1993年   90篇
  1992年   111篇
  1991年   63篇
  1990年   75篇
  1989年   63篇
  1988年   72篇
  1987年   60篇
  1986年   53篇
  1985年   52篇
  1984年   41篇
  1983年   40篇
  1982年   47篇
  1981年   36篇
  1980年   28篇
  1979年   34篇
  1978年   18篇
  1977年   34篇
  1976年   25篇
  1974年   10篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
A long mosaic repetitive sequence (LMRS) was isolated from a mouse liver genome library using a mouse repetitive DNA as a probe. LMRS exhibits the following features: (1) it is almost 15 kb in length; (2) it is partly organized in tandem array and frequently interrupted by other repeated sequences; and (3) it is located predominantly on the A3 band of the mouse X Chromosome (Chr). One fragment of LMRS (B6) shows restriction fragment length polymorphism (RFLP) between different mouse strains, and is thus potentially useful for mapping studies. The nucleotide sequence confirms a mosaic organization of LMRS which includes three repeats in the 5 part, showing similarity with the 5 end of L1Md-A2, and seven long A+T rich segments in the central part of the element. Our findings suggest that this sequence may have arisen from the duplication of an ancestral motif and has expanded by successive waves of amplification and invasion by foreign sequences.The nucleotide sequence data reported in this paper have been submitted to EMBL and have been assigned the accession number X55036.  相似文献   
62.
The synthesis of 1,25(OH)2D3 is a critical control point in the regulation of calcium metabolism, and possibly in the growth and differentiation of a number of cell types. This paper reviews our current understanding of the regulation of this process at the cellular and molecular levels, with the emphasis on the mechanisms of feedback control 1,25(OH)2D3 itself, control of parathyroid hormone, the roles of cyclic AMP dependent protein kinase and protein kinase C, and the interaction between the various intracellular regulators of 1,25(OH)2D3 production.  相似文献   
63.
Summary A total of 252 chromosomes from 126 patients with phenylalanine hydroxylase (PAH) deficiencies were analyzed for both mutant genotypes and restriction fragment length polymorphism (RFLP) haplotypes at the PAH locus. The mutant genes studied originated either from Western Europe (116 alleles) or from Mediterranean countries (136 alleles). Only 27% of all mutant alleles were found to carry identified mutations, particularly mutations at codon 252 (2.3%), 261 (7.5%), 280 (6.3%), 408 (3.5%) and at the splice donor site of intron 12 (6.3%). The mutant genotypes were associated with RFLP haplotypes 7, 1, 38, 2 and 3 at the PAH locus respectively. Except for the splice mutation of intron 12, these associations were preferential, but not exclusive, since the other four mutations were found on the background of at least two RFLP haplotypes. These results, together with the observation that 85% of PAH deficient patients are heterozygotes for their mutant genotypes, emphasize the great heterogeneity of PAH deficiencies in Mediterranean countries and hamper systematic DNA testing for carrier status in this population.  相似文献   
64.
Summary The purpose of this phase I study was to evaluate the toxicity and biological activity of autologous blood-derived macrophages activated ex-vivo with recombinant human interferon (rhuIFN) [monokine-activated killer (MAK) cells] and administered intravenously to 11 lung cancer patients once a week for 6 consecutive weeks. Peripheral blood monocytes were collected by leukapheresis and then purified by counterflow elutriation. The MAK cells were generated by culturing the purified monocytes in Teflon bags for 7 days and adding rhuIFN to the cultured cells for the last 18 h. These MAK cells expressed differentiation-associated surface antigen MAX1, and were cytotoxic in vitro against tumour cell line U937. The MAK cells were infused at dose levels from 1 × 107 to 5 × 108 on an intrapatient dose-escalating schedule. No severe adverse side-effects occurred. Toxicity was mild to moderate [primarly fever (75%) and chills (32%)], non-dose-dependent, and non-cumulative. No consistent change in haemostatic function, or liver or renal function was observed. Dose-limiting toxicity was not reached at 5 × 108 cells (optimal dose reproduced for each patient). The maximum tolerated dose was not determined. The immunomodulatory activity of i.v. infused MAK cells was demonstrated both in vivo by significant increases in granulocyte count and neopterin level in the patients' peripheral blood postinfusion and in vitro by secretory products (IL-1. TNF, neopterin, and thromboplastin-like substance) in the culture supernatants. The in vivo traffic patterns of autologous MAK cells labelled ex-vivo with111In oxine were studied in 7 patients. Gamma imaging showed an immediate but transient lung uptake (<24 h), and a progressive uptake of radioactivity in the liver and spleen was seen from 6 h to 72 h post-infusion. Our results indicate that the preparation of high numbers of autologous, blood-derived MAK cells is a feasible procedure, and their transfusion is safe for patients. This immunotherapeutic approach seems to be encouraging from the point of view of establishing an adjuvant therapeutic modality in cancer patients with minimal residual disease.This work was supported in part by a grant 6911 from the Association pour la Recherche contre le Cancer (ARC), grants from the Ligue Nationale contre le cancer and the Ligues Regionales (Bas-Rhin, Haut-Rhin) contre le cancer, and contract 891013 from the Institut National pour la Santé et la Recherche Médicale (INSERM), France  相似文献   
65.
66.
Bradyrhizobium japonicum USDA 125-Sp, USDA 138, and USDA 138-Sm had been used as inoculants for soybean (Glycine max (L.) Merr.) in soils previously free of B. japonicum. At 8 to 13 years after their release, these strains were reisolated from soil samples. A total of 115 isolates were obtained through nodules, and seven colonies were obtained directly by a serological method. The stability of the inoculants was confirmed by comparing the reisolated cultures with their respective parental strains which had been preserved by being lyophilized or stored on a yeast extract-mannitol agar slant at 4°C. Comparisons were made on morphological and serological characters, carbon compound utilization (8 tested), intrinsic antibiotic resistance (9 tested), and enzymatic activity (19 tested). Mucous and nonmucous isolates of serogroup 125 were analyzed for symbiotic effectiveness and restriction fragment hybridization with a DNA probe. Our data suggest that the B. japonicum inoculants have survived for up to 13 years in the soils without significant mutation except for two reisolates with a slightly increased kanamycin resistance level.  相似文献   
67.
Glutathione reductase catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). The kinetic mechanism is ping-pong, and we have investigated the rate-limiting nature of proton-transfer steps in the reactions catalyzed by the spinach, yeast, and human erythrocyte glutathione reductases using a combination of alternate substrate and solvent kinetic isotope effects. With NADPH or GSSG as the variable substrate, at a fixed, saturating concentration of the other substrate, solvent kinetic isotope effects were observed on V but not V/K. Plots of Vm vs mole fraction of D2O (proton inventories) were linear in both cases for the yeast, spinach, and human erythrocyte enzymes. When solvent kinetic isotope effect studies were performed with DTNB instead of GSSG as an alternate substrate, a solvent kinetic isotope effect of 1.0 was observed. Solvent kinetic isotope effect measurements were also performed on the asymmetric disulfides GSSNB and GSSNP by using human erythrocyte glutathione reductase. The Km values for GSSNB and GSSNP were 70 microM and 13 microM, respectively, and V values were 62 and 57% of the one calculated for GSSG, respectively. Both of these substrates yield solvent kinetic isotope effects greater than 1.0 on both V and V/K and linear proton inventories, indicating that a single proton-transfer step is still rate limiting. These data are discussed in relationship to the chemical mechanism of GSSG reduction and the identity of the proton-transfer step whose rate is sensitive to solvent isotopic composition. Finally, the solvent equilibrium isotope effect measured with yeast glutathione reductase is 4.98, which allows us to calculate a fractionation factor for the thiol moiety of GSH of 0.456.  相似文献   
68.
The Cad antigen is a rare erythrocyte blood group antigen expressed on both sialoglycoprotein and ganglioside structures. It is related both serologically and biochemically to the Sda blood group antigen expressed on over 90% of Caucasian erythrocytes. We reported previously that Cad erythrocytes contain a novel ganglioside that binds Helix pomatia lectin and inhibits human anti-Sda antibody. We have now purified the Cad ganglioside and determined its structure. The ganglioside contained Glc-Gal-GlcNAc-GalNAc-NeuAc in a molar ratio of 1.00:1.94:0.95:0.93:1.05. Its chromatographic mobility was between that of GM1 and GD3. After treatment with beta-hexosaminidase (human placenta Hex A), the product migrated with 2-3-sialosylparagloboside (IV3NeuAcnLc4OseCer), it no longer bound H. pomatia lectin, and it acquired the ability to bind an antibody to sialosylparagloboside. Treatment of this material with neuraminidase (Vibrio cholerae) yielded a product with the mobility of paragloboside (nLc4OseCer) that bound monoclonal antibody 1B2, which is specific for terminal N-acetyllactosaminyl structures. Treatment of the Cad ganglioside with Arthrobacter ureafaciens neuraminidase yielded a product reactive with monoclonal antibody 2D4, which is specific for terminal GalNAc beta (1-4)Gal structures. These data provide strong evidence that the Cad ganglioside structure is GalNAc beta (1-4)[NeuAc alpha (2-3)]Gal beta (1-3)Gal beta (1-4)GlcCer. 1H NMR analysis also supports the conclusion that the terminal GalNAc is linked beta (1-4) to Gal. High-performance thin-layer chromatographic ganglioside patterns from three blood group Cad individuals showed a direct correlation between the quantity of Cad ganglioside and the strength of Cad antigen expression on the erythrocytes, as measured by hemagglutination.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
69.
Microsomal preparations from human kidney were found to contain enzymic activity capable to transfer N-acetylgalactosamine from UDP-N-acetylgalactosamine to native bovine fetuin. The acceptor structures on the fetuin molecules were identified as N- as well as O-linked glycans with a markedly higher incorporation into the N-linked carbohydrate chains. Analysis of the alkali-labile transferase products by thin-layer chromatography indicated that the enzyme is able to synthesize structures having mobilities identical with those found on glycophorin from Cad erythrocytes. Mild acid treatment and enzymic hydrolysis with N-acetylhexosaminidase from jack beans of the N-linked transferase products suggested that beta-D-GalpNAc-(1----4)-[alpha-NeuAc-(2----3)]-beta-D-Galp-(1----s tructures were formed by the enzymic reaction on both N- and O-linked acceptors. The enzyme might, therefore, be involved in the biosynthesis of Sda (and Cad) antigenic structures. By use of various oligosaccharides, glycopeptides, and glycolipids having well characterized carbohydrate sequences, the acceptor-substrate specificity of the N-acetylgalactosaminyltransferase was determined. The enzyme generally recognized alpha-NeuAc-(2----3)-beta-D-Gal groups as acceptors, but in a certain conformation. Thus, tri- and tetra-saccharide alditols, native human glycophorin A, and GM3 were not acceptor substrates although they carry the potential disaccharide acceptor unit. When these structures were presented as sialyl-(2----3)-lactose or as a tryptic peptide from glycophorin A, they were shown to be rather good acceptor substrates for the N-acetyl-beta-D-galactosaminyltransferase from human kidney.  相似文献   
70.
It has recently been suggested that topoisomerases could be important targets for drugs used in several diseases. This prompted us to purify and characterize the topoisomerases I and II present in the erythrocytes of protozoan parasites of the genus Plasmodium, the causative agent of malaria, in order to later use these enzymatic systems in antimalarial drug assays. The topoisomerases were purified from Plasmodium berghei, a parasite of mouse red cells. The Plasmodium topoisomerase II consists of two subunits with a molecular weight of about 160K. The enzyme is ATP- and Mg2+-dependent. The conditions for the reactions of relaxation, unknotting, decatenation, and catenation were found to be similar to those observed with enzymes from other eukaryotic cells. The Plasmodium topoisomerase I is a monomeric enzyme with a Mr of 70K-100K. It is ATP-independent and K+- or Na-dependent. Mg2+ is not required for relaxation but stimulates the reaction. Topoisomerase II was more sensitive to drug action than topoisomerase I. The most active drugs were the ellipticine derivatives. The antimalarial drugs, currently used in human clinical therapy, were poor inhibitors. Some antitumoral drugs stimulated the double-stranded DNA cleavage activity of Plasmodium topoisomerase II, like that of mammalian topoisomerases II. Antimalarial drugs had no stimulating activity. It is therefore suggested that Plasmodium topoisomerases are not good targets for antimalarial drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号