首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4491篇
  免费   478篇
  国内免费   2篇
  2022年   34篇
  2021年   108篇
  2020年   46篇
  2019年   77篇
  2018年   97篇
  2017年   83篇
  2016年   120篇
  2015年   215篇
  2014年   265篇
  2013年   280篇
  2012年   348篇
  2011年   322篇
  2010年   201篇
  2009年   170篇
  2008年   183篇
  2007年   212篇
  2006年   202篇
  2005年   181篇
  2004年   151篇
  2003年   149篇
  2002年   122篇
  2001年   85篇
  2000年   80篇
  1999年   94篇
  1998年   45篇
  1997年   35篇
  1996年   29篇
  1994年   28篇
  1993年   26篇
  1992年   63篇
  1991年   62篇
  1990年   36篇
  1989年   37篇
  1988年   38篇
  1987年   39篇
  1986年   29篇
  1985年   35篇
  1984年   44篇
  1983年   41篇
  1980年   25篇
  1979年   36篇
  1978年   32篇
  1977年   40篇
  1976年   22篇
  1975年   30篇
  1974年   33篇
  1973年   30篇
  1971年   28篇
  1970年   29篇
  1969年   25篇
排序方式: 共有4971条查询结果,搜索用时 203 毫秒
991.
Systems for multigene delivery in mammalian cells, particularly in the context of genome engineering, have gained a lot of attention in biomolecular research and medicine. Initially these methods were based on RNA polymerase II promoters and were used for the production of protein complexes and for applications in cell biology such as reprogramming of somatic cells to stem cells. Emerging technologies such as CRISPR/Cas9-based genome engineering, which enable any alteration at the genomic level of an organism, require additional elements including U6-driven expression cassettes for RNA expression and homology constructs for designed genome modifications. For these applications, systems with high DNA capacity, flexibility and transfer rates are needed. In this article, we briefly give an update on some of recent strategies that facilitate multigene assembly and delivery into mammalian cells. Also, we review applications in various fields of biology that rely on multigene delivery systems.  相似文献   
992.

The production of drugs, cosmetics, and food which are derived from plant cell and tissue cultures has a long tradition. The emerging trend of manufacturing cosmetics and food products in a natural and sustainable manner has brought a new wave in plant cell culture technology over the past 10 years. More than 50 products based on extracts from plant cell cultures have made their way into the cosmetics industry during this time, whereby the majority is produced with plant cell suspension cultures. In addition, the first plant cell culture-based food supplement ingredients, such as Echigena Plus and Teoside 10, are now produced at production scale. In this mini review, we discuss the reasons for and the characteristics as well as the challenges of plant cell culture-based productions for the cosmetics and food industries. It focuses on the current state of the art in this field. In addition, two examples of the latest developments in plant cell culture-based food production are presented, that is, superfood which boosts health and food that can be produced in the lab or at home.

  相似文献   
993.
Prenylation is a post-translational modification that increases the affinity of proteins for membranes and mediates protein-protein interactions. The retinal rod rhodopsin-sensitive cGMP 3′,5′-cyclic phosphodiesterase subunit delta (PDEδ) is a prenyl binding protein that is essential for the shuttling of small GTPases between different membrane compartments and, thus, for their proper functioning. Although the prenylome comprises up to 2% of the mammalian proteome, only few prenylated proteins are known to interact with PDEδ. A proteome-wide approach was employed to map the PDEδ interactome among the prenylome and revealed RAB23, CDC42 and CNP as novel PDEδ interacting proteins. Moreover, PDEδ associates with the lamin A mutant progerin in a prenyl-dependent manner. These findings shed new light on the role of PDEδ in binding (and regulating) prenylated proteins in cells.  相似文献   
994.
ABSTRACT

Background

Dark septate endophytes (DSEs) represent a form-group of ascomycetous fungi that inhabit the roots of a wide range of plant species, but our knowledge on their interaction with the host plants is still limited.  相似文献   
995.
996.
Both surfaces of the hexagonally packed intermediate (HPI) layer of Deinococcus radiodurans were imaged in buffer solution by atomic force microscopy. When adsorbed to freshly cleaved mica, the hydrophilic outer surface of the HPI layer was attached to the substrate and the hydrophobic inner surface was exposed to the stylus. The height of a single HPI layer was 7.0 nm, while overlapping edges of adjacent single layers adsorbed to mica had a height of 14.7 nm. However, double-layered stacks with inner surfaces facing each other exhibited a height of 17.4 nm. These stacks exposed the outer surface to the stylus. The different heights of overlapping layers and stacks are attributed to differences in the interaction between inner and outer surfaces. At high resolution, the inner surface revealed a protruding core with a central pore connected by six emanating arms. The pores exhibited two conformations, one with and the other without a central plug. Individual pores were observed to switch from one state to the other.  相似文献   
997.
We analyzed DNA sequences that regulate the expression of an isocitrate lyase gene from Brassica napus L. during late embryogenesis and during postgerminative growth to determine whether glyoxysomal function is induced by a common mechanism at different developmental stages. beta-Glucuronidase constructs were used both in transient expression assays in B. napus and in transgenic Arabidopsis thaliana to identify the segments of the isocitrate lyase 5' flanking region that influence promoter activity. DNA sequences that play the principal role in activating the promoter during post-germinative growth are located more than 1,200 bp upstream of the gene. Distinct DNA sequences that were sufficient for high-level expression during late embryogenesis but only low-level expression during postgerminative growth were also identified. Other parts of the 5' flanking region increased promoter activity both in developing seed and in seedlings. We conclude that a combination of elements is involved in regulating the isocitrate lyase gene and that distinct DNA sequences play primary roles in activating the gene in embryos and in seedlings. These findings suggest that different signals contribute to the induction of glyoxysomal function during these two developmental stages. We also showed that some of the constructs were expressed differently in transient expression assays and in transgenic plants.  相似文献   
998.
999.
Digital imaging microscopy of fluo-3 fluorescence was used to study the velocity and shape of intracellular Ca2+ waves in isolated rat cardiomyocytes as a function of temperature. Decreasing the temperature from 37 to 17 degrees C reduced the longitudinal wave velocity by a factor of 1.8 and remarkably slowed the decay of [Ca2+]i in the trailing flank of a wave. Using image analysis, rise times, and half-maximum decay times of local Ca2+ transients, which characterize the processes of local Ca2+ release and removal, were determined as a function of temperature. Apparent activation energies for wave front propagation, local Ca2+ release, and local Ca2+ removal were derived from Arrhenius plots and amounted to -23, -28, and -46 kJ/mol, respectively. The high activation energy of Ca2+ removal, which arises from the activity of the sarcoplasmic reticulum (SR) Ca2+ ATPase, relative to those of longitudinal wave propagation and local Ca2+ release excludes the hypothetical mechanism of regenerative "spontaneous Ca2+ release," in which Ca2+ that has been taken up from the approaching wavefront triggers Ca2+ release at a luminal site of the SR. It is consistent, however, with the hypothesis that Ca2+ wave propagation is based on Ca(2+)-induced Ca2+ release where Ca2+ triggers release on the cytosolic face of the SR.  相似文献   
1000.
The activation of MAPKAP kinase 2 was investigated under heat-shock conditions in mouse Ehrlich ascites tumor cells and after treatment of human MO7 cells with tumor necrosis factor-α (TNF-α). MAPKAP kinase 2 activity was determined using the small heat-shock proteins (sHsps) Hsp25 and Hsp27 as substrates. In both cell types, about a threefold increase in MAPKAP kinase 2 activity could be detected in a time interval of about 10–15 min after stimulation either by heat shock or TNF-α. Phosphorylation of MAPKAP kinase 2, but not the level of MAPKAP kinase 2 mRNA, was increased after heat shock in EAT cells. It is further shown that activation of MAPKAP kinase 2 in MO7 cells is accompanied by increased MAP kinase activity. These data strongly suggest that increased phosphorylation of the sHsps after heat shock or TNF-α treatment results from phosphorylation by MAPKAP kinase 2, which itself is activated by phosphorylation through MAP kinases. Hence, we demonstrate that MAPKAP kinase 2 is responsible not only for phosphorylation of sHsps in vitro but also in vivo. The findings link sHsp phosphorylation to the MAP kinase cascade, explaining the early phosphorylation of sHsp that is stimulated by a variety of inducers such as mitogens, phorbol esters, thrombin, calcium ionophores, and heat shock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号