首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   950篇
  免费   82篇
  2023年   2篇
  2022年   3篇
  2021年   19篇
  2020年   11篇
  2019年   14篇
  2018年   14篇
  2017年   17篇
  2016年   17篇
  2015年   59篇
  2014年   57篇
  2013年   69篇
  2012年   84篇
  2011年   65篇
  2010年   43篇
  2009年   35篇
  2008年   52篇
  2007年   62篇
  2006年   58篇
  2005年   50篇
  2004年   43篇
  2003年   45篇
  2002年   42篇
  2001年   17篇
  2000年   9篇
  1999年   16篇
  1998年   7篇
  1997年   9篇
  1996年   8篇
  1995年   9篇
  1994年   9篇
  1993年   4篇
  1992年   5篇
  1991年   4篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1936年   3篇
排序方式: 共有1032条查询结果,搜索用时 15 毫秒
251.
To date, a number of Myoviridae bacteriophages that infect Aeromonadaceae have been identified and characterized. However, the genome sequences of Aeromonas phages that not belong to the Myoviridae have not been investigated yet. Herein, we report the complete genome sequence of Aeromonas phage phiAS7, which belongs to the Podoviridae and infects Aeromonas salmonicida subsp. salmonicida.  相似文献   
252.
Among the abundant bacteriophages that belong to the order Caudovirales in the ocean, the genome sequences of marine siphoviruses are poorly investigated in comparison to those of myo- or podoviruses. Here we report the complete genome sequence of Vibrio phage pVP-1, which belongs to the family Siphoviridae and infects Vibrio parahaemolyticus ATCC 33844.  相似文献   
253.
Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochore. Although previous studies show that the mitotic kinesin CENP-E forms a link between attachment of the spindle microtubule to the kinetochore and the mitotic checkpoint signaling cascade, the molecular mechanism underlying dynamic kinetochore-microtubule interactions in mammalian cells remains elusive. Here, we identify a novel interaction between CENP-E and SKAP that functions synergistically in governing dynamic kinetochore-microtubule interactions. SKAP binds to the C-terminal tail of CENP-E in vitro and is essential for an accurate kinetochore-microtubule attachment in vivo. Immunoelectron microscopic analysis indicates that SKAP is a constituent of the kinetochore corona fibers of mammalian centromeres. Depletion of SKAP or CENP-E by RNA interference results in a dramatic reduction of inter-kinetochore tension, which causes chromosome mis-segregation with a prolonged delay in achieving metaphase alignment. Importantly, SKAP binds to microtubules in vitro, and this interaction is synergized by CENP-E. Based on these findings, we propose that SKAP cooperates with CENP-E to orchestrate dynamic kinetochore-microtubule interaction for faithful chromosome segregation.  相似文献   
254.
It has long been held that Eudyptes penguins will only ever develop a maximum of two mature yolky follicles to match their invariant two-egg clutch, an idea inferred largely from egg removal studies. Combining our own data with those from a previous but rarely cited study and by applying these to a simple developmental model, we show that macaroni penguins (Eudyptes chrysolophus) develop up to four large, yolky vitellogenic follicles, and they do so despite the fact that they will never lay more than two eggs or rear more than one chick, a tactic that seems maladaptive given their realized reproductive success. We discuss these results within the context of the usual pattern of reproductive investment in Eudyptes penguins and suggest a broader significance to modes of clutch size determination among all penguins (order Sphenisciformes).  相似文献   
255.
The neuronal stomatin-like proteins UNC-1 and UNC-24 play important roles in the nervous system of Caenorhabditis elegans. These neuronal stomatin-like proteins are putative chaperone proteins that can modify volatile anesthetic sensitivity and disrupt coordinated locomotion. A suppressor of unc-1 and unc-24, named ssu-1(fc73) (for suppressor of stomatin uncoordination), suppresses three phenotypes of neuronal stomatin-like protein deficiency as follows: volatile anesthetic sensitivity, uncoordinated locomotion, and a constitutive alternative developmental phenotype known as dauer. Here we provide the first phenotypic characterization of ssu-1, predicted to be the only C. elegans cytosolic alcohol sulfotransferase, a family of enzymes that catalyze a sulfate linkage with the alcohol group of small molecules for the purposes of detoxification or modification of signaling. In vitro enzyme analysis of bacterially expressed SSU-1 demonstrates sulfotransferase activity and thus confirms the function predicted by protein sequence similarities. Whereas unc-1 is expressed in the majority of neurons of C. elegans, expression of SSU-1 protein in only the two ASJ amphid interneurons is sufficient to restore the wild type phenotype. This work demonstrates that SSU-1 is a functional sulfotransferase that likely modifies endocrine signaling in C. elegans. The expression of SSU-1 in the ASJ neurons refines the understanding of the function of these cells and supports their classification as endocrine tissue. The relationship of unc-1, unc-24, and ssu-1 is the first association of neuronal stomatin-like proteins sharing regulatory roles with a sulfotransferase enzyme.  相似文献   
256.
Cell-mediated immunity and production of type 1 cytokines are the main defenses against pathogenic fungi. Ligation of CD40 by CD40L on T cells is critical for the induction of these immune responses in vivo. We explored the role of CD40/CD40L interactions in vaccine immunity to Blastomyces dermatitidis by immunizing CD40(-/-) and CD40L(-/-) mice and analyzing their resistance to reinfection in a murine pulmonary model. In the absence of CD40 or CD40L, CD4(+) cells failed to get primed or produce type 1 cytokine and impaired the generation of CD8(+) T1 cells. The CD8(+) T cell defect was not due to regulatory T cells or impaired APC maturation or Ag presentation to T cells. If CD4(+) cells were first eliminated, vaccination of CD40(-/-) and CD40L(-/-) mice restored priming of CD8(+) cells, type 1 cytokine production, and resistance. Hence, CD4(+) and CD8(+) cells differ sharply in their requirement for CD40/CD40L interaction during the generation of antifungal immunity. Despite the plasticity of T cell subsets in vaccine immunity, in absence of CD40/CD40L interaction, CD4(+) cells may impede the priming of CD8(+) cells at the cost of host survival against a lethal infectious disease.  相似文献   
257.
The aim of this investigation was to exploit the vast comparative data generated by comparative genome hybridization (CGH) studies of Campylobacter jejuni in developing a genotyping method. We examined genes in C. jejuni that exhibit binary status (present or absent between strains) within known plasticity regions, in order to identify a minimal subset of gene targets that provide high-resolution genetic fingerprints. Using CGH data from three studies as input, binary gene sets were identified with “Minimum SNPs” software. “Minimum SNPs” selects for the minimum number of targets required to obtain a predefined resolution, based on Simpson's index of diversity (D). After implementation of stringent criteria for gene presence/absence, eight binary genes were found that provided 100% resolution (D = 1) of 20 C. jejuni strains. A real-time PCR assay was developed and tested on 181 C. jejuni and Campylobacter coli isolates, a subset of which have previously been characterized by multilocus sequence typing, flaA short variable region sequencing, and pulsed-field gel electrophoresis. In addition to the binary gene real-time PCR assay, we refined the seven-member single nucleotide polymorphism (SNP) real-time PCR assay previously described for C. jejuni and C. coli. By normalizing the SNP assay with the respective C. jejuni and C. coli ubiquitous genes, mapA and ceuE, the polymorphisms at each SNP could be determined without separate reactions for every polymorphism. We have developed and refined a rapid, highly discriminatory genotyping method for C. jejuni and C. coli that uses generic technology and is amenable to high-throughput analyses.  相似文献   
258.
The tocopherol transfer protein (TTP) is a member of the CRAL-TRIO family of lipid binding proteins that facilitates vitamin E transfer between membrane vesicles in vitro. In cultured hepatocytes, TTP enhances the secretion of tocopherol to the media; presumably, tocopherol transfer is at the basis of this biological activity. The mechanism underlying ligand transfer by TTP is presently unknown, and available tools for monitoring this activity suffer from complicated assay procedure and poor sensitivity. We report the characterization of a fluorescent vitamin E analogue, (R)-2,5,7,8-tetramethylchroman-2-[9-(7-nitrobenz[1,2,5]oxadiazol-4-ylamino)nonyl]chroman-6-ol (NBD-TOH), as a sensitive and convenient probe for the ligand binding and transfer activities of TTP. Upon binding to TTP, NBD-TOH fluorescence is blue shifted, and its intensity is greatly enhanced. We used these properties to accurately determine the affinity of NBD-TOH to TTP. The analogue binds to TTP reversibly and with high affinity (K(d) = 8.5 +/- 6 nM). We determined the affinity of NBD-TOH to a TTP protein in which lysine 59 is replaced with a tryptophan. When occurring in humans, this heritable mutation causes the ataxia with vitamin E deficiency (AVED) disorder. We find that the affinity of NBD-TOH to this mutant TTP is greatly diminished (K(d) = 71 +/- 19 nM). NBD-TOH functioned as a sensitive fluorophore in fluorescent resonance energy transfer (FRET) experiments. Using the fluorescent lipids TRITC-DHPE or Marina Blue-DHPE as a donor or an acceptor for NBD-TOH fluorescence, we obtained high-resolution kinetic data for tocopherol movement out of lipid bilayers, a key step in the TTP-facilitated ligand transfer reaction.  相似文献   
259.
We have designed a new low-pressure Diamond Anvil Cell (DAC), calibrated two novel pressure calibrants and validated the use of semi-quantitative Raman and X-ray spectroscopies to monitor the fate of microbes, their metabolism or their cellular components under controlled pressures and temperatures in the 0.1-1.4 GPa and 20-300 degrees C P,T range. The low-pressure DAC has a 250- to 600-microm-thick observation diamond window to allow for lower detection limits and improved microscopic imaging. This new design allows the determination of cellular growth parameters from automated image analysis, which can be correlated with the spectroscopic data obtained on metabolism, ensuring high quality data collection on microbial activity under pressure. The novel pressure sensors offer the ease of use of the well-known ruby scale, while being more sensitive and reacting to pressure variations instantaneously.  相似文献   
260.
The synthesis and structure-activity relationship of a series of arylaminoethyl amide cathepsin S inhibitors are reported. Optimization of P3 and P2 groups to improve overall physicochemical properties resulted in significant improvements in oral bioavailability over early lead compounds. An X-ray structure of compound 37 bound to the active site of cathepsin S is also reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号