首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1810篇
  免费   157篇
  国内免费   270篇
  2024年   11篇
  2023年   27篇
  2022年   62篇
  2021年   105篇
  2020年   78篇
  2019年   93篇
  2018年   95篇
  2017年   55篇
  2016年   78篇
  2015年   127篇
  2014年   126篇
  2013年   172篇
  2012年   185篇
  2011年   154篇
  2010年   113篇
  2009年   89篇
  2008年   100篇
  2007年   88篇
  2006年   81篇
  2005年   63篇
  2004年   60篇
  2003年   59篇
  2002年   25篇
  2001年   20篇
  2000年   16篇
  1999年   33篇
  1998年   19篇
  1997年   19篇
  1996年   10篇
  1995年   14篇
  1994年   10篇
  1993年   13篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有2237条查询结果,搜索用时 15 毫秒
51.
This study aimed to investigate the protective effect of the M9 region (residues 290–562) of amino-Nogo-A fused to the human immunodeficiency virus trans-activator TAT in an in vitro model of ischemia–reperfusion induced by oxygen–glucose deprivation (OGD) in HT22 hippocampal neurons, and to investigate the role of NADPH oxidase in this protection. Transduction of TAT-M9 was analyzed by immunofluorescence staining and western blot. The biologic activity of TAT-M9 was assessed by its effects against OGD-induced HT22 cell damage, compared with a mutant M9 fusion protein or vehicle. Cellular viability and lactate dehydrogenase (LDH) release were assessed. Neuronal apoptosis was evaluated by flow cytometry. The Bax/Bcl-2 ratio was determined by western blotting. Reactive oxygen species (ROS) levels and NADPH oxidase activity were also measured in the presence or absence of an inhibitor or activator of NADPH oxidase. Our results confirmed the delivery of the protein into HT22 cells by immunofluorescence and western blot. Addition of 0.4 μmol/L TAT-M9 to the culture medium effectively improved neuronal cell viability and reduced LDH release induced by OGD. The fusion protein also protected HT22 cells from apoptosis, suppressed overexpression of Bax, and inhibited the reduction in Bcl-2 expression. Furthermore, TAT-M9, as well as apocynin, decreased NADPH oxidase activity and ROS content. The protective effects of the TAT-M9 were reversed by TBCA, an agonist of NADPH oxidase. In conclusion, TAT-M9 could be successfully transduced into HT22 cells, and protected HT22 cells against OGD damage by inhibiting NADPH oxidase-mediated oxidative stress. These findings suggest that the TAT-M9 protein may be an efficient therapeutic agent for neuroprotection.  相似文献   
52.
It is well known that there is a size effect for the thermal conductivity of thin films and that vacancy defects in film reduce the film's thermal conduction. In this paper, the film size and vacancy defect effects on the thermal conductivities of argon thin films were studied by molecular dynamics simulations. The results show the existence of phonon boundary scattering. The results also confirm that the theoretical model based on the Boltzmann equation can accurately model the thermal conduction of thin argon films. Both the theoretical and MD results illustrate that, although, both the defect and the thickness of the thin film deduce the thermal conductivity, their physical mechanisms differ.  相似文献   
53.
Hydrocotyle peltiformis R.Li & H.Li,sp.nov. 盾叶天胡荽 (S1-2.Fig.1,S1-3.Fig.2) Type:China.Yunnan:Baoshan Prefecture,Longyang,Mangkuang township,Baihualing village,spring pool,east side of Gaoligong Shan,second evergreen broad-leaved forest,growing along trail,25°18′20.9″(N,98°47′59.7″ E,alt.1600 m,2007-10-12,H.Li R.Li & X.C.Shi 1337 (holotype,KUN).  相似文献   
54.
The central role of multisubunit tethering complexes in intracellular trafficking has been established in yeast and mammalian systems. However, little is known about their roles in the stress responses and the early secretory pathway in Arabidopsis. In this study, Maigo2 (MAG2), which is equivalent to the yeast Tip20p and mammalian Rad50‐interacting protein, is found to be required for the responses to salt stress, osmotic stress and abscisic acid in seed germination and vegetative growth, and MAG2‐like (MAG2L) is partially redundant with MAG2 in response to environmental stresses. MAG2 strongly interacts with the central region of ZW10, and both proteins are important as plant endoplasmic reticulum (ER)‐stress regulators. ER morphology and vacuolar protein trafficking are unaffected in the mag2, mag2l and zw10 mutants, and the secretory marker to the apoplast is correctly transported in mag2 plants, which indicate that MAG2 functions as a complex with ZW10, and is potentially involved in Golgi‐to‐ER retrograde trafficking. Therefore, a new role for ER–Golgi membrane trafficking in abiotic‐stress and ER‐stress responses is discovered.  相似文献   
55.
The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) play essential roles in intracellular trafficking. However, few experimental data have clarified their roles in the stress responses and the early secretary pathway in Arabidopsis. The AtSec20 gene encodes a protein that is homologous to yeast Sec20p and mammalian BNIP1, which are involved in the Golgi-to-ER retrograde trafficking in yeast and mammalian cells. In this study, AtSec20 is found to be required for the responses to salt stress, osmotic stress and gibberellin (GA) during seed germination and early seedling establishment. Mutation of AtSec20 unaffects the morphology of intracellular organelles, such as endoplasmic reticulum (ER), trans-Golgi network, and peroxisome, and vacuolar protein trafficking is normal in sec20 mutants. Collectively, these results imply that the AtSec20 is involved in abiotic stress tolerance, potentially via roles in retrograde vesicle fusion process in Arabidopsis.  相似文献   
56.
57.
Shikonin has anticancer activity, but it has not yet been applied into clinical use. In the present study, shikonin was prepared using liposomes. We aimed to examine several aspects of sh-L (shikonin-containing liposomes): preparation, angiogenic suppression and cellular uptake through self-fluorescence. Sh-L were prepared using soybean phospholipid and cholesterol to form the membrane and shikonin was encapsulated into the phospholipid membrane. Three liposomes were prepared with shikonin. They had red fluorescence and were analysed using a flow cytometer. Angiogenic suppression of sh-L was determined using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide], Transwell tests, chick CAM (chorioallantoic membrane) and Matrigel™ plug assay. MTT assay showed the median IC50 (inhibitory concentrations) as follows: shikonin, sh-L1 and sh-L2 were 4.99±0.23, 5.81±0.57 and 7.17±0.69 μM, respectively. The inhibition rates of migration were 53.58±7.05, 46.56±4.36 and 41.19±3.59% for 3.15 μM shikonin, sh-L1 and sh-L2, respectively. The results of CAM and Matrigel plug assay demonstrated that shikonin and sh-L can decrease neovascularization. Effect of shikonin was more obvious than sh-L at the same concentration. The results showed that sh-L decreased the toxicity, the rate of inhibition of migration and angiogenic suppression. The cellular uptake of the sh-L could be pictured because of the self-fluorescence. The self-fluorescence will be useful for conducting further research. Sh-L might be an excellent preparation for future clinical application to cancer patients.  相似文献   
58.
The type VI secretion system (T6SS), a multisubunit needle-like apparatus, has recently been found to play a role in interspecies interactions. The Gram-negative bacteria harboring T6SS (donor) deliver the effectors into their neighboring cells (recipient) to kill them. Meanwhile, the cognate immunity proteins were employed to protect the donor cells against the toxic effectors. Tae4 (type VI amidase effector 4) and Tai4 (type VI amidase immunity 4) are newly identified T6SS effector-immunity pairs. Here, we report the crystal structures of Tae4 from Enterobacter cloacae and Tae4-Tai4 complexes from both E. cloacae and Salmonella typhimurium. Tae4 acts as a dl-endopeptidase and displays a typical N1pC/P60 domain. Unlike Tsi1 (type VI secretion immunity 1), Tai4 is an all-helical protein and forms a dimer in solution. The small angle x-ray scattering study combined with the analytical ultracentrifugation reveal that the Tae4-Tai4 complex is a compact heterotetramer that consists of a Tai4 dimer and two Tae4 molecules in solution. Structure-based mutational analysis of the Tae4-Tai4 interface shows that a helix (α3) of one subunit in dimeric Tai4 plays a major role in binding of Tae4, whereas a protruding loop (L4) in the other subunit is mainly responsible for inhibiting Tae4 activity. The inhibition process requires collaboration between the Tai4 dimer. These results reveal a novel and unique inhibition mechanism in effector-immunity pairs and suggest a new strategy to develop antipathogen drugs.  相似文献   
59.
Insect protein, used for in vitro culture media for entomopathogenic nematode, produces nematodes of high quality. However, the time-consuming culture and poor purity of nematodes hinder the commercial application of insect protein media. We show that hydrolyzed insect protein improves nematode purity in in vitro culture. The results revealed that nematode purity was increased by more than 90 %, and the culture period was reduced by 6 days. Estimated economic efficiency of using hydrolyzed insect protein medium was increased by 44.25 % over that obtained with non-hydrolyzed insect medium.  相似文献   
60.
The coupling between the quaternary structure, stability and function of streptavidin makes it difficult to engineer a stable, high affinity monomer for biotechnology applications. For example, the binding pocket of streptavidin tetramer is comprised of residues from multiple subunits, which cannot be replicated in a single domain protein. However, rhizavidin from Rhizobium etli was recently shown to bind biotin with high affinity as a dimer without the hydrophobic tryptophan lid donated by an adjacent subunit. In particular, the binding site of rhizavidin uses residues from a single subunit to interact with bound biotin. We therefore postulated that replacing the binding site residues of streptavidin monomer with corresponding rhizavidin residues would lead to the design of a high affinity monomer useful for biotechnology applications. Here, we report the construction and characterization of a structural monomer, mSA, which combines the streptavidin and rhizavidin sequences to achieve optimized biophysical properties. First, the biotin affinity of mSA (Kd = 2.8 nM) is the highest among nontetrameric streptavidin, allowing sensitive monovalent detection of biotinylated ligands. The monomer also has significantly higher stability (Tm = 59.8°C) and solubility than all other previously engineered monomers to ensure the molecule remains folded and functional during its application. Using fluorescence correlation spectroscopy, we show that mSA binds biotinylated targets as a monomer. We also show that the molecule can be used as a genetic tag to introduce biotin binding capability to a heterologous protein. For example, recombinantly fusing the monomer to a cell surface receptor allows direct labeling and imaging of transfected cells using biotinylated fluorophores. A stable and functional streptavidin monomer, such as mSA, should be a useful reagent for designing novel detection systems based on monovalent biotin interaction. Biotechnol. Bioeng. 2013; 110: 57–67. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号