首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   82篇
  国内免费   1篇
  2021年   6篇
  2020年   4篇
  2019年   9篇
  2018年   6篇
  2017年   6篇
  2016年   9篇
  2015年   14篇
  2014年   8篇
  2013年   14篇
  2012年   19篇
  2011年   13篇
  2010年   14篇
  2009年   10篇
  2008年   19篇
  2007年   16篇
  2006年   15篇
  2005年   16篇
  2004年   12篇
  2003年   15篇
  2002年   22篇
  2001年   16篇
  2000年   23篇
  1999年   14篇
  1998年   8篇
  1997年   6篇
  1995年   7篇
  1994年   4篇
  1993年   6篇
  1992年   10篇
  1991年   12篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   16篇
  1986年   14篇
  1985年   13篇
  1984年   8篇
  1983年   5篇
  1981年   7篇
  1980年   7篇
  1978年   5篇
  1977年   4篇
  1975年   7篇
  1974年   6篇
  1972年   9篇
  1971年   6篇
  1969年   6篇
  1967年   3篇
  1941年   3篇
  1929年   3篇
排序方式: 共有529条查询结果,搜索用时 250 毫秒
61.
Surfactant protein-A (SP-A) is the best studied and most abundant of the protein components of lung surfactant and plays an important role in host defense of the lung. It has been shown that ozone-induced oxidation of SP-A protein changes its functional and biochemical properties. In the present study, eight plant polyphenols (three flavonoids, three hydroxycinnamic acids, and two hydroxybenzoic acids) known as strong antioxidants, were tested for their ability to inhibit ozone-induced SP-A oxidation as a mechanism for chemoprevention against lung damage. SP-A isolated from alveolar proteinosis patients was exposed to ozone (1 ppm) for 4 h. The flavonoids protected SP-A from oxidation in a dose dependent manner. ( - )-Epicatechin was the most potent flavonoid and exhibited inhibition of ozone-induced formation of carbonyls by 35% at a concentration as low as 5 μM. Hydroxybenzoic acids inhibited SP-A oxidation in a dose-dependent manner although they were less potent than flavonoids. On the other hand, hydroxycinnamic acids exhibited a different inhibitory pattern. Inhibition was observed only at medium concentrations. The results indicate that inhibition of SP-A oxidation by plant polyphenols may be a mechanism accounting for the protective activity of natural antioxidants against the effects of ozone exposure on lungs.  相似文献   
62.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   
63.
Increasing evidence suggests that physical activity could delay or attenuate the symptoms of Alzheimer''s disease (AD). But the underlying mechanisms are still not fully understood. To investigate the effect of long-term treadmill exercise on the spatial memory of AD mice and the possible role of β-amyloid, brain-derived neurotrophic factor (BDNF) and microglia in the effect, male APPswe/PS1dE9 AD mice aged 4 months were subjected to treadmill exercise for 5 months with 6 sessions per week and gradually increased load. A Morris water maze was used to evaluate the spatial memory. Expression levels of β-amyloid, BDNF and Iba-1 (a microglia marker) in brain tissue were detected by immunohistochemistry. Sedentary AD mice and wildtype C57BL/6J mice served as controls. The results showed that 5-month treadmill exercise significantly decreased the escape latencies (P < 0.01 on the 4th day) and improved the spatial memory of the AD mice in the water maze test. Meanwhile, treadmill exercise significantly increased the number of BDNF-positive cells and decreased the ratios of activated microglia in both the cerebral cortex and the hippocampus. However, treadmill exercise did not significantly alleviate the accumulation of β-amyloid in either the cerebral cortex or the hippocampus of the AD mice (P > 0.05). The study suggested that long-term treadmill exercise could improve the spatial memory of the male APPswe/PS1dE9 AD mice. The increase in BDNF-positive cells and decrease in activated microglia might underpin the beneficial effect.  相似文献   
64.

Background

Mice lacking surfactant protein-A (SP-A-/-; knockout; KO) exhibit increased vulnerability to infection and injury. Although many bronchoalveolar lavage (BAL) protein differences between KO and wild-type (WT) are rapidly reversed in KO after infection, their clinical course is still compromised. We studied the impact of SP-A on the alveolar macrophage (AM) proteome under basal conditions. Male SP-A KO mice were SP-A-treated (5 micrograms/mouse) and sacrificed in 6 or 18 hr. The AM proteomes of KO, SP-A-treated KO, and WT mice were studied by 2D-DIGE coupled with MALDI-ToF/ToF and AM actin distribution was examined by phalloidon staining.

Results

We observed: a) significant differences from KO in WT or exogenous SP-A-treated in 45 of 76 identified proteins (both increases and decreases). These included actin-related/cytoskeletal proteins (involved in motility, phagocytosis, endocytosis), proteins of intracellular signaling, cell differentiation/regulation, regulation of inflammation, protease/chaperone function, and proteins related to Nrf2-mediated oxidative stress response pathway; b) SP-A-induced changes causing the AM proteome of the KO to resemble that of WT; and c) that SP-A treatment altered cell size and F-actin distribution.

Conclusions

These differences are likely to enhance AM function. The observations show for the first time that acute in vivo SP-A treatment of KO mice, under basal or unstimulated conditions, affects the expression of multiple AM proteins, alters F-actin distribution, and can restore much of the WT phenotype. We postulate that the SP-A-mediated expression profile of the AM places it in a state of "readiness" to successfully conduct its innate immune functions and ensure lung health.
  相似文献   
65.
Murine norovirus (MNV) is prevalent in rodent facilities in the United States. Because MNV has a tropism for macrophages and dendritic cells, we hypothesized that it may alter phenotypes of murine models of inflammatory diseases, such as obesity and atherosclerosis. We examined whether MNV infection influences phenotypes associated with diet-induced obesity and atherosclerosis by using Ldlr(-/-) mice. Male Ldlr(-/-) mice were maintained on either a diabetogenic or high-fat diet for 16 wk, inoculated with either MNV or vehicle, and monitored for changes in body weight, blood glucose, glucose tolerance, and insulin sensitivity. Influence of MNV on atherosclerosis was analyzed by determining aortic sinus lesion area. Under both dietary regimens, MNV-infected and control mice gained similar amounts of weight and developed similar degrees of insulin resistance. However, MNV infection was associated with significant increases in aortic sinus lesion area and macrophage content in Ldlr(-/-) mice fed a high-fat diet but not those fed a diabetogenic diet. In conclusion, MNV infection exacerbates atherosclerosis in Ldlr(-/-) mice fed a high-fat diet but does not influence obesity- and diabetes-related phenotypes. Increased lesion size was associated with increased macrophages, suggesting that MNV may influence macrophage activation or accumulation in the lesion area.  相似文献   
66.
Ozone (O(3)), a major component of air pollution and a strong oxidizing agent, can lead to lung injury associated with edema, inflammation, and epithelial cell damage. The effects of O(3) on pulmonary immune cells have been studied in various in vivo and in vitro systems. We have shown previously that O(3) exposure of surfactant protein (SP)-A decreases its ability to modulate proinflammatory cytokine production by cells of monocyte/macrophage lineage (THP-1 cells). In this report, we exposed THP-1 cells and/or native SP-A obtained from bronchoalveolar lavage of patients with alveolar proteinosis to O(3) and studied cytokine production and NF-kappaB signaling. The results showed 1) exposure of THP-1 cells to O(3) significantly decreased their ability to express TNF-alpha in response to SP-A; TNF-alpha production, under these conditions, was still significantly higher than basal (unstimulated) levels in filtered air-exposed THP-1 cells; 2) exposure of both THP-1 cells and SP-A to O(3) did not result in any significant differences in TNF-alpha expression compared with basal levels; 3) O(3) exposure of SP-A resulted in a decreased ability of SP-A to activate the NF-kappaB pathway, as assessed by the lack of significant increase and decrease of the nuclear p65 subunit of NF-kappaB and cytoplasmic IkappaBalpha, respectively; and 4) O(3) exposure of THP-1 cells resulted in a decrease in SP-A-mediated THP-1 cell responsiveness, which did not seem to be mediated via the classic NF-kappaB pathway. These findings indicate that O(3) exposure may mediate its effect on macrophage function both directly and indirectly (via SP-A oxidation) and by involving different mechanisms.  相似文献   
67.
Phelps EA  LeDoux JE 《Neuron》2005,48(2):175-187
Research on the neural systems underlying emotion in animal models over the past two decades has implicated the amygdala in fear and other emotional processes. This work stimulated interest in pursuing the brain mechanisms of emotion in humans. Here, we review research on the role of the amygdala in emotional processes in both animal models and humans. The review is not exhaustive, but it highlights five major research topics that illustrate parallel roles for the amygdala in humans and other animals, including implicit emotional learning and memory, emotional modulation of memory, emotional influences on attention and perception, emotion and social behavior, and emotion inhibition and regulation.  相似文献   
68.
CD69 is thought to be a pluripotent signaling molecule expressed on the surface of a number of activated leukocytes including B, T, and NK cells, monocytes, neutrophils, and platelets. While some advances have been made regarding the mechanisms by which CD69 may participate in such diverse functions as cell aggregation, cellular cytotoxicity, and release of cytokines and inflammatory mediators, the most proximal links of signal initiation have not been identified. Our study has identified, by immunoprecipitation and direct protein sequencing (LC/MS/MS), binding of CD69 to an N-terminal protein fragment of calreticulin expressed on the cell surface of human PBMCs. Given the recently identified roles calreticulin plays in cell adhesion and angiogensis, the identification of CD69 binding directly to calreticulin may provide insights into mechanism(s) by which CD69 or other CD69 family members, i.e., LLT1 and AICL participates in such diverse functions.  相似文献   
69.
Reaction of the salt KCpCo(CN)3 (1) with zinc iodide leads to the formation of a highly insoluble Co(III)/Zn(II) polymeric chain. However, pyridine was found to disrupt the aggregate that is formed to yield a crystalline trimetallic complex consisting of two CpCo(CN)3 anions bridging a Zn(py)4 dication through the cyanide ligands, [CpCo(CN)2(μ-CN)]2Zn(py)4 (2). Along these same lines, reaction of CpCo(CN)2PPh3 (3) with AlCl3 or CoCl2 leads to the formation of a highly crystalline Co(II)/Co(III) diamond, [CpCo(PPh3)(μ-CN)2CoCl2]2 (4). Molecular structures of 1, 2, 3 and 4 were determined by single-crystal X-ray crystallography.  相似文献   
70.
The apical sodium-dependent bile acid transporter (ASBT, SLC10A2) facilitates the enterohepatic circulation of bile salts and plays a key role in cholesterol metabolism. The membrane topology of ASBT was initially scanned using a consensus topography analysis that predominantly predicts a seven transmembrane (TM) domain configuration adhering to the "positive inside" rule. Membrane topology was further evaluated and confirmed by N-glycosylation-scanning mutagenesis, as reporter sites inserted in the putative extracellular loops 1 and 3 were glycosylated. On the basis of a 7TM topology, we built a three-dimensional model of ASBT using an approach of homology-modeling and remote-threading techniques for the extramembranous domains using bacteriorhodopsin as a scaffold for membrane attachment points; the model was refined using energy minimizations and molecular dynamics simulations. Ramachandran scores and other geometric indicators show that the model is comparable in quality to the crystal structures of similar proteins. Simulated annealing and docking of cholic acid, a natural substrate, onto the protein surface revealed four distinct binding sites. Subsequent site-directed mutagenesis of the predicted binding domain further validated the model. This model agrees further with available data for a pathological mutation (P290S) because the mutant model after in silico mutagenesis loses the ability to bind bile acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号