首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   216篇
  免费   6篇
  国内免费   1篇
  223篇
  2020年   1篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   5篇
  2015年   9篇
  2014年   17篇
  2013年   23篇
  2012年   15篇
  2011年   13篇
  2010年   7篇
  2009年   10篇
  2008年   13篇
  2007年   8篇
  2006年   11篇
  2005年   4篇
  2004年   9篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   5篇
  1999年   2篇
  1998年   5篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   3篇
  1983年   1篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1972年   2篇
  1970年   2篇
  1969年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
1.
Direct evidence is presented for a proline cycle using a cell-free experimental system which sequentially transfers 3H from [1-3H]glucose to NADP+ to Δ1-pyrroline-5-carboxylate and yields [3H]proline. The formation of [3H]proline depends on the presence of NADP, Δ1-pyrroline-5-carboxylate, and the enzymes glucose-6-phosphate dehydrogenase and Δ1-pyrroline-5-carboxylate reductase. The production of [3H]proline from unlabeled proline in the presence of mitochondria provides direct evidence for one complete turn of a proline cycle which transfers reducing equivalents produced by glucose oxidation in the pentose pathway into mitochondria. In this cycle, proline is oxidized to Δ1-pyrroline-5-carboxylate by mitochondrial proline oxidase. Δ1-pyrroline-5-carboxylate is released from mitochondria and is recycled back to proline by Δ1-pyrroline-5-carboxylate reductase with concomitant oxidation of NADPH. At the maximal rate observed, 60% of Δ1-pyrroline-5-carboxylate produced is recycled back to proline. This cycle provides a mechanism for transferring reducing equivalents from NADPH into mitochondria and is linked to glucose oxidation in the pentose pathway by NADPH turnover.  相似文献   
2.
L-pyrroline-5-carboxylic acid, an intermediate in the interconversions of glutamic acid, ornithine and proline, is a potent stimulator of the hexose-monophosphate pentose pathway in cultured human fibroblasts. These studies suggest that pyrroline-5-carboxylate reductase, which catalyzes the conversion of pyrroline-5-carboxylate to proline coupled with the oxidation of NADPH, provides the NADP for the observed activation of the hexose-monophosphate pentose pathway.  相似文献   
3.
4.
Recent years have seen the convergence of both genetic and biochemical approaches in the study of protein translocation inE. coli. The powerful combination of these approaches is exemplified in the use of anin vitro protein synthesis-protein translocaltion system to analyze the role of genetically defined components of the protein translocation machinery. We describe in this review recent results focusing on the function of thesecA, secB, andsecY gene products and the demonstration of their requirement forin vitro protein translocation. The SecA protein was recently shown to possess ATPase activity and was proposed to be a component of the translocation ATPase. We present a speculative working model whereby the translocator complex is composed of the integral membrane proteins SecY, SecD, SecE, and SecF, forming an aqueous channel in the cytoplasmic membrane, and the tightly associated peripheral membrane protein SecA functioning as the catalytic subunit of the translocator or protein-ATPase.  相似文献   
5.
The interconversions of proline and 1-pyrroline-5-carboxylate form an intercellular cycle that is the basis of a metabolic interaction between hepatocytes and erythrocytes. The cycle transfers oxidizing potential from hepatocytes to erythrocytes, which stimulates pentose phosphate pathway in erythrocytes. This interaction depends on the differential metabolism of proline and 1-pyrroline-5-carboxylate in erythrocytes and hepatocytes and consists of the following: in hepatocytes proline oxidase converts proline into 1-pyrroline-5-carboxylate, which is released into the medium and taken up by erythrocytes; erythrocyte 1-pyrroline-5-carboxylate reductase converts 1-pyrroline-5-carboxylate into proline and concomitantly generates NADP+; the generated oxidizing potential drives glucose metabolism through the pentose phosphate pathway in erythrocytes; finally, erythrocytes release proline into the medium, enabling it to re-enter hepatocytes and repeat the cycle. The increased activity of the pentose phosphate pathway in erythrocytes may enhance the production of 5-phosphoribosyl pyrophosphate, a necessary moiety for the processing of purines.  相似文献   
6.

Aims/Hypothesis

Non-Fc-binding Anti CD3 antibody has proven successful in reverting diabetes in the non-obese diabetes mouse model of type 1 diabetes and limited efficacy has been observed in human clinical trials. We hypothesized that addition of rapamycin, an mTOR inhibitor capable of inducing operational tolerance in allogeneic bone marrow transplantation, would result in improved diabetes reversal rates and overall glycemia.

Methods

Seventy hyperglycemic non-obese diabetic mice were randomized to either a single injection of anti CD3 alone or a single injection of anti CD3 followed by 14 days of intra-peritoneal rapamycin. Mice were monitored for hyperglycemia and metabolic control.

Results

Mice treated with the combination of anti CD3 and rapamycin had similar rates of diabetes reversal compared to anti CD3 alone (25/35 vs. 22/35). Mice treated with anti CD3 plus rapamycin had a significant improvement in glycemia control as exhibited by lower blood glucose levels in response to an intra-peritoneal glucose challenge; average peak blood glucose levels 30 min post intra-peritoneal injection of 2 gr/kg glucose were 6.9 mmol/L in the anti CD3 plus rapamycin group vs. 10 mmo/L in the anti CD3 alone (P<0.05).

Conclusions/Interpretation

The addition of rapamycin to anti CD3 results in significant improvement in glycaemia control in diabetic NOD mice.  相似文献   
7.
8.
Gracilaria is a red seaweed that has been cultivated worldwide and is commercially used for food, fertilizers, animal fodder, and phycocolloids. However, the high morphological plasticity of seaweeds often leads to the misidentification in the traditional identification of Gracilaria species. Molecular markers are important especially in the correct identification of Gracilaria species with high economic value. Microsatellite markers were developed from the expressed sequence tags of seaweeds deposited at the National Center for Biotechnology Information database and used for differentiating Gracilaria changii collected at various localities and two other Gracilaria species. Out of 33 primer pairs, only one primer pair gave significant results that can distinguish between three different Gracilaria species as well as G. changii from various localities based on the variation in repeated nucleotides. The unweighted pair group method using arithmetic mean dendrogram analysis grouped Gracilaria species into five main clades: (a) G. changii from Batu Besar (Malacca), Sandakan (Sabah), Bintulu (Sarawak), Batu Tengah (Malacca), Gua Tanah (Malacca), Middle Banks (Penang), Sungai (Sg.) Merbok (Kedah), Teluk Pelandok (Negeri Sembilan), Pantai Dickson (Negeri Sembilan), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore); (b) Gracilaria manilaensis from Cebu, Philippines; (c) G. changii from Morib (Selangor); (d) Gracilaria fisheri from Pattani, Thailand; and (e) G. changii from Pantai Dickson (Negeri Sembilan), Gua Tanah (Malacca), Sg. Merbok (Kedah), Sg. Kong-Kong (Johore), and Sg. Pulai (Johore). This result shows that this primer pair was able to distinguish between three different species, which are G. changii from Morib (Malaysia), G. fisheri from Pattani (Thailand), and G. manilaensis from Cebu (Philippines), and also between different genotypes of G. changii. This suggested that the simple sequence repeat primer we developed was suitable for differentiating between different Gracilaria species due to the polymorphisms caused by the variability in the number of tandem repeats.  相似文献   
9.
Autophagy has been evolved as one of the adaptive cellular processes in response to stresses such as nutrient deprivation. Various cellular cargos such as damaged organelles and protein aggregates can be selectively degraded through autophagy. Recently, the lipid storage organelle, lipid droplet(LD), has been reported to be the cargo of starvation-induced autophagy. However, it remains largely unknown how the autophagy machinery recognizes the LDs and whether it can selectively degrade LDs. In this study, we show that Drosophila histone deacetylase 6(dHDAC6), a key regulator of selective autophagy, is required for the LD turnover in the hepatocyte-like oenocytes in response to starvation. HDAC6 regulates LD turnover via p62/SQSTM1(sequestosome 1)-mediated aggresome formation, suggesting that the selective autophagy machinery is required for LD recognition and degradation. Furthermore, our results show that the loss of dHDAC6 causes steatosis in response to starvation. Our findings suggest that there is a potential link between selective autophagy and susceptible predisposition to lipid metabolism associated diseases in stress conditions.  相似文献   
10.
The ATP-binding cassette (ABC) transporters belong to a large superfamily of proteins which share a common function and a common nucleotide-binding domain. The CvaB protein from Escherichia coli is a member of the bacterial ABC exporter subfamily and is essential for the export of the peptide antibiotic colicin V. Here we report that, surprisingly, the CvaB carboxyl-terminal nucleotide-binding domain (BCTD) can be preferentially cross-linked to GTP but not to ATP at low temperatures. The cross-linking is Mg2+ and Mn2+ dependent. However, BCTD possesses similar GTPase and ATPase activities at 37°C, with the same kinetic parameters and with similar responses to inhibitors. Moreover, a point mutation (D654H) in CvaB that completely abolishes colicin V secretion severely impairs both GTPase and ATPase activities in the corresponding BCTD, indicating that the two activities are from the same enzyme. Interestingly, hydrolysis activity of ATP is much more cold sensitive than that of GTP: BCTD possesses mainly GTP hydrolysis activity at 10°C, consistent with the cross-linking results. These findings suggest a novel mechanism for an ABC protein-mediated transport with specificity for GTP hydrolysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号