首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12151篇
  免费   1042篇
  国内免费   291篇
  2024年   19篇
  2023年   116篇
  2022年   269篇
  2021年   454篇
  2020年   235篇
  2019年   356篇
  2018年   408篇
  2017年   325篇
  2016年   473篇
  2015年   690篇
  2014年   737篇
  2013年   788篇
  2012年   1019篇
  2011年   954篇
  2010年   595篇
  2009年   494篇
  2008年   616篇
  2007年   625篇
  2006年   525篇
  2005年   509篇
  2004年   414篇
  2003年   381篇
  2002年   412篇
  2001年   275篇
  2000年   275篇
  1999年   214篇
  1998年   119篇
  1997年   70篇
  1996年   79篇
  1995年   83篇
  1994年   67篇
  1993年   57篇
  1992年   96篇
  1991年   87篇
  1990年   90篇
  1989年   85篇
  1988年   57篇
  1987年   47篇
  1986年   59篇
  1985年   65篇
  1984年   28篇
  1983年   34篇
  1982年   20篇
  1981年   27篇
  1980年   13篇
  1979年   23篇
  1978年   20篇
  1977年   15篇
  1976年   12篇
  1972年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen–plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.  相似文献   
102.
103.
Acute liver failure (ALF) is an inflammation-mediated hepatocyte death process associated with ferroptosis. Avicularin (AL), a Chinese herbal medicine, exerts anti-inflammatory and antioxidative effects. However, the protective effect of AL and the mechanism on ALF have not been reported. Our in vivo results suggest that AL significantly alleviated lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced hepatic pathological injury, liver enzymes, inflammatory cytokines, reactive oxygen species and iron levels and increased the antioxidant enzyme activities (malondialdehyde and glutathione). Our further in vitro experiments demonstrated that AL suppressed inflammatory response in LPS-stimulated RAW 264.7 cells via blocking the toll-like receptor 4 (TLR4)/myeloid differentiation protein-88 (MyD88)/nuclear factor kappa B (NF-κB) pathway. Moreover, AL attenuated ferroptosis in D-GalN-induced HepG2 cells by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) pathway. Therefore, AL can alleviate inflammatory response and ferroptosis in LPS/D-GalN-induced ALF, and its protective effects are associated with blocking TLR4/MyD88/NF-κB pathway and activating Nrf2/HO-1/GPX4 pathway. Moreover, AL is a promising therapeutic option for ALF and should be clinically explored.  相似文献   
104.
OBJECTIVE--To investigate the utility of risk factors such as bone mineral density, lifestyle, and postural stability in the prediction of osteoporotic fractures. DESIGN--Longitudinal, epidemiological, and population based survey. SETTING--City of Dubbo, New South Wales. SUBJECTS--All residents of Dubbo aged > or = 60 on 1 January 1989. MAIN OUTCOME MEASURE--Incidence of fracture for individual subjects. RESULTS--The overall incidence of atraumatic fractures in men and women was 1.9% and 3.1% per annum respectively. The predominant sites of fracture were hip (18.9%), distal radius (18.5%), ribs and humerus (11.9% in each case), and ankle and foot (9.1% and 6.6% respectively). Major predictors of fractures in men and women were femoral neck bone mineral density, body sway, and quadriceps strength. Age, years since menopause, height, weight, and lifestyle factors were also correlated with bone mineral density and body sway and hence were indirect risk factors for fracture. Discriminant function analysis correctly identified 96% and 93% (sensitivities 88% and 81%) of men and women, respectively, who subsequently developed atraumatic fractures. Predictions based on this model indicated that a woman with a bone mineral density in the lowest quartile in the hip together with high body sway had a 8.4% probability of fracture per annum. This represented an almost 14-fold increase in risk of fracture compared with a woman in the highest bone mineral density quartile with low postural sway. An individual with all three predictors in the "highest risk" quartile had a 13.1% risk of fracture per annum. CONCLUSIONS--Bone mineral density, body sway, and muscle strength are independent and powerful synergistic predictors of fracture incidence.  相似文献   
105.
Microbial production of various TCA intermediates and related chemicals through the reductive TCA cycle has been of great interest. However, rumen bacteria that naturally possess strong reductive TCA cycle have been rarely studied to produce these chemicals, except for succinic acid, due to their dependence on fumarate reduction to transport electrons for ATP synthesis. In this study, malic acid (MA), a dicarboxylic acid of industrial importance, was selected as a target chemical for mass production using Mannheimia succiniciproducens, a rumen bacterium possessing a strong reductive branch of the TCA cycle. The metabolic pathway was reconstructed by eliminating fumarase to prevent MA conversion to fumarate. The respiration system of M. succiniciproducens was reconstructed by introducing the Actinobacillus succinogenes dimethylsulfoxide (DMSO) reductase to improve cell growth using DMSO as an electron acceptor. Also, the cell membrane was engineered by employing Pseudomonas aeruginosa cis-trans isomerase to enhance MA tolerance. High inoculum fed-batch fermentation of the final engineered strain produced 61 g/L of MA with an overall productivity of 2.27 g/L/h, which is the highest MA productivity reported to date. The systems metabolic engineering strategies reported in this study will be useful for developing anaerobic bioprocesses for the production of various industrially important chemicals.  相似文献   
106.
Species identification of Scenedesmus-like microalgae, comprising Desmodesmus, Tetradesmus, and Scenedesmus, has been challenging due to their high morphological and genetic similarity. After developing a DNA signaturing tool for Desmodesmus identification, we built a DNA signaturing database for Tetradesmus. The DNA signaturing tool contained species-specific nucleotide sequences of Tetradesmus species or strain groups with high similarity in ITS2 sequences. To construct DNA signaturing, we collected data on ITS2 sequences, aligned the sequences, organized the data by ITS2 sequence homology, and determined signature sequences according to hemi-compensatory base changes (hCBC)/CBC data from previous studies. Four Tetradesmus species and 11 strain groups had DNA signatures. The signature sequence of the genus Tetradesmus, TTA GAG GCT TAA GCA AGG ACCC, recognized 86% (157/183) of the collected Tetradesmus strains. Phylogenetic analysis of Scenedesmus-like species revealed that the Tetradesmus species were monophyletic and closely related to each other based on branch lengths. Desmodesmus was suggested to split into two subgenera due to their genetic and morphological distinction. Scenedesmus must be analyzed along with other genera of the Scenedesmaceae family to determine their genetic relationships. Importantly, DNA signaturing was integrated into a database for identifying Scenedesmus-like species through BLAST.  相似文献   
107.
Although Platycodon grandiflorum (Jacq.) A.DC. is a renowned medicine food homology plant, reports of excessive cadmium (Cd) levels are common, which affects its safety for clinical use and food consumption. To enable its Cd levels to be regulated or reduced, it is necessary to first elucidate the mechanism of Cd uptake and accumulation in the plant, in addition to its detoxification mechanisms. This present study used inductively couple plasma-mass-spectrometry to analyze the subcellular distribution and chemical forms of Cd in different tissues of P. grandiflorum. The experimental results showed that Cd was mainly accumulated in the roots [predominantly in the cell wall (50.96%–61.42%)], and it was found primarily in hypomobile and hypotoxic forms. The proportion of Cd in the soluble fraction increased after Cd exposure, and the proportion of insoluble phosphate Cd and oxalate Cd increased in roots and leaves, with a higher increase in oxalate Cd. Therefore, it is likely that root retention mechanisms, cell wall deposition, vacuole sequestration, and the formation of low mobility and low toxicity forms are tolerance strategies for Cd detoxification used by P. grandiflorum. The results of this study provide a theoretical grounding for the study of Cd accumulation and detoxification mechanisms in P. grandiflorum, and they can be used as a reference for developing Cd limits and standards for other medicine food homology plants.  相似文献   
108.
3-Hydroxypropionic acid (3-HP) is a platform molecule whose biological production was carried out by the bacterium Limosilactobacillus reuteri according to a two-step process: first, a growth phase in batch mode on glucose, then a glycerol bioconversion into 3-HP in fed-batch mode. With the objective of improving 3-HP bioproduction, this study aimed at defining the operating conditions during the bioconversion phase that increases the bioproduction performance. A central composite rotatable design allowed testing various pH levels and specific glycerol feeding rates. By establishing response surfaces, optimal conditions have been identified that were different depending on the considered output variable (final 3-HP quantity, 3-HP production yield and production rate). Of them, 3-HP final quantity and 3-HP production yield were maximized at pH 6.0 and at specific glycerol feeding rates of 60 and 55 mggly gCDW−1 h−1, respectively. The specific 3-HP production rate was the highest at the upper limit of the specific substrate feeding rate (80 mggly gCDW−1 h−1) but was not affected by the pH. An additional experiment was carried out at pH 6.0 and a specific glycerol feeding rate of 80 mggly gCDW−1 h−1 to validate the previous observations. In conclusion, the results showed a significant improvement of 3-HP concentration by 13%, of specific production rate by 34% and of 3-HP volumetric productivity by 39%, as compared to the initial values.  相似文献   
109.
A new isopropyl chromone ( 1 ) and a new flavanone glucoside ( 2 ) together with eleven known compounds ( 3–13 ) were isolated from the leaves of Syzygium cerasiforme (Blume) Merr. & L.M.Perry. Their structures were elucidated as 5,7-dihydroxy-2-isopropyl-6,8-dimethyl-4H-chromen-4-one ( 1 ), 5,7-dihydroxyflavanone 7-O-β-D-(6′′-O-galloylglucopyranoside) ( 2 ), strobopinin ( 3 ), demethoxymatteucinol ( 4 ), pinocembrin-7-O-β-D-glucopyranoside ( 5 ), (2S)-hydroxynaringenin-7-O-β-D-glucopyranoside ( 6 ), afzelin ( 7 ), quercetin ( 8 ), kaplanin ( 9 ), endoperoxide G3 ( 10 ), grasshopper ( 11 ), vomifoliol ( 12 ), litseagermacrane ( 13 ) by the analysis of HR-ESI-MS, NMR, and CD spectral data. Compounds 1 , 2 , 5 , 6 and 10 inhibited NO production on LPS-activated RAW264.7 cells with IC50 values of 12.28±1.15, 8.52±1.62, 7.68±0.87, 9.67±0.57, and 6.69±0.34 μM, respectively, while the IC50 values of the other compounds ranging from 33.38±0.78 to 86.51±2.98 μM, compared to that of the positive control, NG-monomethyl-L-arginine acetate (L-NMMA) with an IC50 value of 32.50±1.00 μM.  相似文献   
110.
The current report describes the chemical investigation and biological activity of extracts produced by three fungal strains Fusarium oxysporum, Penicillium simplicissimum, and Fusarium proliferatum isolated from the roots of Piper nigrum L. growing in Vietnam. These fungi were namely determined by morphological and DNA analyses. GC/MS identification revealed that the EtOAc extracts of these fungi were associated with the presence of saturated and unsaturated fatty acids. These EtOAc extracts showed cytotoxicity towards cancer cell lines HepG2, inhibited various microbacterial organisms, especially fungus Aspergillus niger and yeast Candida albicans (the MIC values of 50–100 μg/mL). In α-glucosidase inhibitory assay, they induced the IC50 values of 1.00-2.53 μg/mL were better than positive control acarbose (169.80 μg/mL). The EtOAc extract of F. oxysporum also showed strong anti-inflammatory activity against NO production and PGE-2 level. Four major compounds linoleic acid (37.346 %), oleic acid (27.520 %), palmitic acid (25.547 %), and stearic acid (7.030 %) from the EtOAc extract of F. oxysporum were selective in molecular docking study, by which linoleic and oleic acids showed higher binding affinity towards α-glucosidase than palmitic and stearic acids. In subsequent docking assay with inducible nitric oxide synthase (iNOS), palmitic acid, oleic acid and linoleic acid could be moderate inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号