首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3241篇
  免费   329篇
  国内免费   11篇
  3581篇
  2023年   31篇
  2022年   58篇
  2021年   82篇
  2020年   55篇
  2019年   65篇
  2018年   87篇
  2017年   82篇
  2016年   127篇
  2015年   157篇
  2014年   167篇
  2013年   235篇
  2012年   287篇
  2011年   237篇
  2010年   163篇
  2009年   127篇
  2008年   161篇
  2007年   136篇
  2006年   144篇
  2005年   112篇
  2004年   138篇
  2003年   102篇
  2002年   105篇
  2001年   82篇
  2000年   63篇
  1999年   62篇
  1998年   18篇
  1997年   23篇
  1996年   19篇
  1995年   20篇
  1994年   13篇
  1993年   15篇
  1992年   22篇
  1991年   37篇
  1990年   30篇
  1989年   24篇
  1988年   16篇
  1987年   18篇
  1986年   20篇
  1985年   18篇
  1984年   22篇
  1983年   18篇
  1982年   11篇
  1980年   17篇
  1979年   20篇
  1978年   18篇
  1977年   14篇
  1975年   21篇
  1974年   13篇
  1973年   18篇
  1972年   11篇
排序方式: 共有3581条查询结果,搜索用时 0 毫秒
11.
Hung HC  Chien YC  Hsieh JY  Chang GG  Liu GY 《Biochemistry》2005,44(38):12737-12745
Human mitochondrial NAD(P)+-dependent malic enzyme is inhibited by ATP. The X-ray crystal structures have revealed that two ATP molecules occupy both the active and exo site of the enzyme, suggesting that ATP might act as an allosteric inhibitor of the enzyme. However, mutagenesis studies and kinetic evidences indicated that the catalytic activity of the enzyme is inhibited by ATP through a competitive inhibition mechanism in the active site and not in the exo site. Three amino acid residues, Arg165, Asn259, and Glu314, which are hydrogen-bonded with NAD+ or ATP, are chosen to characterize their possible roles on the inhibitory effect of ATP for the enzyme. Our kinetic data clearly demonstrate that Arg165 is essential for catalysis. The R165A enzyme had very low enzyme activity, and it was only slightly inhibited by ATP and not activated by fumarate. The values of K(m,NAD) and K(i,ATP) to both NAD+ and malate were elevated. Elimination of the guanidino side chain of R165 made the enzyme defective on the binding of NAD+ and ATP, and it caused the charge imbalance in the active site. These effects possibly caused the enzyme to malfunction on its catalytic power. The N259A enzyme was less inhibited by ATP but could be fully activated by fumarate at a similar extent compared with the wild-type enzyme. For the N259A enzyme, the value of K(i,ATP) to NAD+ but not to malate was elevated, indicating that the hydrogen bonding between ATP and the amide side chain of this residue is important for the binding stability of ATP. Removal of this side chain did not cause any harmful effect on the fumarate-induced activation of the enzyme. The E314A enzyme, however, was severely inhibited by ATP and only slightly activated by fumarate. The values of K(m,malate), K(m,NAD), and K(i,ATP) to both NAD+ and malate for E314A were reduced to about 2-7-folds compared with those of the wild-type enzyme. It can be concluded that mutation of Glu314 to Ala eliminated the repulsive effects between Glu314 and malate, NAD+, or ATP, and thus the binding affinities of malate, NAD+, and ATP in the active site of the enzyme were enhanced.  相似文献   
12.
Discovery of an alternative fuel is now an urgent matter because of the impending issue of oil depletion. Lipids synthesized in algal cells called triacylglycerols (TAGs) are thought to be of the most value as a potential biofuel source because they can use transesterification to manufacture biodiesel. Biodiesel is deemed as a good solution to overcoming the problem of oil depletion since it is capable of providing good performance similar to that of petroleum. Expression of several genomic sequences, including glycerol-3-phosphate dehydrogenase, glycerol-3-phosphate acyltransferase, lysophosphatidic acid acyltransferase, phosphatidic acid phosphatase, diacylglycerol acyltransferase, and phospholipid:diacylglycerol acyltransferase, can be useful for manipulating metabolic pathways for biofuel production. In this study, we found this approach indeed increased the storage lipid content of C. minutissima UTEX 2219 up to 2-fold over that of wild type. Thus, we conclude this approach can be used with the biodiesel production platform of C. minutissima UTEX 2219 for high lipid production that will, in turn, enhance productivity.  相似文献   
13.
Recent animal studies have suggested that there exists an activated subpopulation of circulating granulocytes which plays an important part in microvascular sequestration and tissue injury during shock and ischemia. In this respect, spontaneous granulocyte activation in form of pseudopod formation, a manifestation of actin polymerization, is a high risk for microvascular entrapment. The present investigation was carried out to determine if there is a significant difference in pseudopod formation in vitro between granulocytes obtained from healthy volunteers without symptoms and patients with acute cardiovascular illnesses. Blood samples from 25 healthy volunteers, 12 patients with acute myocardial infarction (AMI) and 12 patients with acute cerebral infarction (ACI) to determine spontaneous pseudopod formation in granulocytes with a high resolution light microscope over a period of several hours. The results revealed that the mean percentage of cells with pseudopod formation in the control group was below 10% in the first 3 hours, and increased to about 50% at 12 hours. In AMI patients, the level of activation within the first hour was not significantly different from the controls, but it rose rapidly to 90% in 4 to 5 hours. Patients with cerebral infarction, however, showed no significant difference from the control group. When the granulocytes of healthy subjects were incubated in plasma of AMI, the cells were activated similar to AMI granulocytes in their own plasma. When AMI plasma was serially diluted with Ringer's solution, the activation curve fell successively. These results indicate that AMI patients' blood contains plasma factor(s) which can activate granulocytes at a more rapid rate than controls.  相似文献   
14.

Background

In contrast to the conventional model of hospital-treated and government directly observed treatment (DOT) for multidrug-resistant tuberculosis (MDR-TB) patient care, the Taiwan MDR-TB Consortium (TMTC) was launched in May 2007 with the collaboration of five medical care groups that have provided both care and DOT. This study aimed to determine whether the TMTC provided a better care model for MDR-TB patients than the conventional model.

Methods and Findings

A total of 651 pulmonary MDR-TB patients that were diagnosed nation-wide from January 2000-August 2008 were enrolled. Of those, 290 (45%) MDR-TB patients whose initial sputum sample was taken in January 2007 or later were classified as patients in the TMTC era. All others were classified as patients in the pre-TMTC era. The treatment success rate at 36 months was better in the TMTC era group (82%) than in the pre-TMTC era group (61%) (p<0.001). With multiple logistic regressions, diagnosis in the TMTC era (adjusted odds ratio (aOR) 2.8, 95% confidence interval (CI) 1.9–4.2) was an independent predictor of a higher treatment success rate at 36 months. With the time-dependent proportional hazards method, a higher treatment success rate was still observed in the TMTC era group compared to the pre-TMTC era group (adjusted hazard ratio 6.3, 95% CI 4.2–9.5).

Conclusion

The improved treatment success observed in the TMTC era compared to the pre-TMTC era is encouraging. The detailed TMTC components that contribute the most to the improved outcome will need confirmation in follow-up studies with large numbers of MDR-TB patients.  相似文献   
15.
X Zou  TK Pham  PC Wright  J Noirel 《Genomics》2012,100(4):240-244
Although protein expression and regulation have been intensively studied, a complete picture of its mechanisms is still to be drawn. Analysis of high-throughput quantitative proteomics data provides a way to better understand protein regulation. Here, we introduce a bioinformatic analysis method to correlate protein regulation with individual amino acid patterns. We compare the amino acid composition between groups of regulated and unregulated proteins and investigate the correlation between codon usage patterns and protein regulation levels in two Sulfolobus species in "biofilm vs planktonic" experiments. The identified amino acids can then be associated with the regulation of specific gene functions. Strikingly, our analysis shows that functional categories of regulated proteins with similar composition and codon usage pattern of specific amino acids behave similarly. This finding can contribute to a better understanding of protein and gene expression regulation and could find applications in gene optimisation.  相似文献   
16.
Analytical electrophoresis on polyacrylamide-agarose gels of aggregating proteoglycan monomers from baboon articular cartilage produces two distinct bands, corresponding to two different aggregating monomer populations. A preparative electrophoresis procedure is described for isolating the two monomers. Proteoglycans were extracted from young baboon articular cartilage in 4 M guanidinium chloride containing proteolysis inhibitors and aggregated after hyaluronic acid addition. The aggregates were separated from non-aggregated proteoglycans by isopycnic centrifugation, followed by gel chromatography on Sepharose CL-2B. The monomers of the aggregates were obtained by isopycnic centrifugation under dissociative conditions. Two monomers were separated by preparative electrophoresis on 0.8 % agarose submerged gels. Approximately 60 % of the proteoglycans were recovered from the gel using a freeze-squeeze procedure. Aliquots of the separated monomers gave single bands when submitted to analytical polyacrylamide-agarose gel electrophoresis. Their migration and appearance were similar to that of the two bands present in the non separated preparation of monomers.  相似文献   
17.
Bioassay-guided fractionation of the chloroform-soluble fraction of Morus bombycis, using an in vitro PTP1B inhibitory assay led to the identification of three 2-arylbenzofurans, albafuran A (1), mulberrofuran W (2) and mulberrofuran D (6), along with three chalcone-derived Diels–Alder products, kuwanon J (3), kuwanon R (4), and kuwanon V (5). Compounds 16 showed remarkable inhibitory activity against PTP1B with IC50 values ranging from 2.7 to 13.8 μM. Inhibition kinetics were analyzed by Lineweaver–Burk plots, which suggested that compounds 16 inhibited PTP1B in a mixed-type manner. The present results indicate that the respective lipophilic and hydroxyl groups of 2-arylbenzofurans and chalcone-derived Diels–Alder products play an important role in inhibition of PTP1B.  相似文献   
18.
The consumption of in-situ chemical oxidation (ISCO) oxidant by soil oxidizable matter (OM), termed the soil oxidant demand (SOD), is an essential factor when designing treatments for successful remediation at an ISCO site. This study aims to assess the impact of different oxidants on SOD and the soil itself, using the Taguchi experimental design. Five oxidation systems, including persulfate (PS), hydrogen peroxide (HP), permanganate (PM), Fe2+ activated PS and Fe2+ activated HP, and four factors including oxidant concentration, activator concentration, reaction time, and pH were investigated. The results of the Taguchi analysis in this study show that oxidant concentration had the greatest effect on the SOD. Other factors also affected the SOD and the optimum conditions for achieving a lower SOD were determined using the Taguchi design method. Additionally, original and oxidized soils were analyzed using a scanning electron microscope equipped with an X-ray energy dispersive spectrometer to determine the surface morphology and chemical composition of the samples. Variations in soil organic carbon levels and total soil bacterial counts were recorded and the speciation of soil minerals (Fe, Mn, Cu, and Zn) was analyzed.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号