首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   40篇
  2024年   2篇
  2023年   7篇
  2021年   5篇
  2020年   24篇
  2019年   38篇
  2018年   34篇
  2017年   3篇
  2016年   5篇
  2015年   1篇
  2014年   3篇
  2013年   27篇
  2012年   1篇
  2010年   15篇
  2009年   9篇
  2008年   9篇
  2007年   9篇
  2006年   17篇
  2005年   12篇
  2004年   2篇
  2003年   6篇
  2002年   17篇
  2001年   26篇
  2000年   24篇
  1999年   8篇
  1998年   14篇
  1997年   6篇
  1996年   24篇
  1995年   15篇
  1994年   4篇
  1993年   8篇
  1992年   3篇
  1989年   9篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   5篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1974年   1篇
  1953年   1篇
  1946年   1篇
  1945年   1篇
  1944年   2篇
排序方式: 共有408条查询结果,搜索用时 31 毫秒
71.
We investigated the electrophysiological effect and antiarrhythmic potential of cinnamophilin (Cinn), a thromboxane A2 antagonist isolated fromCinnamomum philippinense, on rat cardiac tissues. Action potential and ionic currents in single rat ventricular cells were examined by current clamp or voltage clamp in a whole-cell configuration. In 9 episodes of ischemia-reperfusion arrhythmia, 10 µM Cinn converted 6 of them to normal sinus rhythm. Cinn suppressed the maximal rate of rise of the action potential upstroke (Vmax) and prolonged the action potential duration at 50% repolarization (APD50). Voltage clamp study showed that the suppression of Vmax by Cinn was associated with an inhibition of sodium inward current (INa, IC50=10.0 ± 0.4 µM). At 30 µM, V1/2 for the steady-state inactivation curve of INa was shifted from –84.1 ± 0.2 to –93.0 ± 0.5 mV. Cinn also reduced calcium inward current (ICa) dose-dependently with an IC50 value of 9.5 ± 0.3 µM. Cinn (10 µM) reduced the ICa with a negative shift of V1/2 for the steady-state inactivation curve of ICa from –32.2 ± 0.3 to –50.7 ± 0.4 mV. The prolongation of APD50 was associated with an inhibition of the integral of potassium outward current with IC50 values between 4.8 and 7.1 µM. At 10 µM, Cinn reduced INa without a negative shift of its voltage-dependent steady-state inactivation curves. The inhibition of transient outward current (Ito) by Cinn (3–30 µM) was associated with an acceleration of its time constant of inactivation and negative shift of its potential-dependent steady-state inactivation curves. The equilibrium dissociation constant (Kd) of Cinn to inhibit open state Ito channels, as calculated from the time constant of developing block, was 18.3 µM. The time constant of recovery of Ito from inactivation state was unaffected by Cinn. The rate constant for the relief from the depolarization-dependent block of Ito was calculated to be 23.9 ms. As compared with its effect on Ito, Cinn exerted about half the potency to block INa and ICa. These results indicate that the inhibition of INa, ICa and Ito may contribute to the antiarrhythmic activity of Cinn against ischemia-reperfusion arrhythmia.  相似文献   
72.
Studies of several gene knockout mice suggest an interesting association of a moderate T cell response with systemic autoimmune diseases. In addition, CD95 ligand (FasL) expression in some strains of these mice is impaired. Because FasL is critically involved in regulating peripheral tolerance, there may be a link between autoimmune diseases and a moderate T cell response that cannot activate the FasL gene. Here, we propose that there are two thresholds of T cell activation. When moderately stimulated, T cells can be activated to the low (1st) threshold, which permits the induction of CD40L, IL-2, IL-4, and other components that help the immune response. The high (2nd) activation threshold can only be achieved by a strong and concurrent stimulation through TCR and IL-2R. Once the high threshold is reached, FasL is produced to induce apoptosis of the activated T and B cells. In the absence of the FasL-mediated downregulation, the activated B cells become efficient antigen-presenting cells for self-antigens and excellent responders for T cell help. Such an exacerbating condition, induced by recurrent and moderate activation, favors the development of autoreactive T cells and autoantibody production. Evidence supporting this hypothesis and some predictions that can be tested are described.  相似文献   
73.
This study aims to investigate the cellular effects of radiofrequency exposure, 1950 MHz, long-term evolution (LTE) signal, administered alone and in combination with mitomycin-C (MMC), a well-known cytotoxic agent. Chinese hamster lung fibroblast (V79) cells were exposed/sham exposed in a waveguide-based system under strictly controlled conditions of both electromagnetic and environmental parameters, at specific absorption rate (SAR) of 0.3 and 1.25 W/kg. Chromosomal damage (micronuclei formation), oxidative stress (reactive oxygen species [ROS] formation), and cell cycle progression were analyzed after exposure and coexposure. No differences between exposed samples and sham-controls were detected following radiofrequency exposure alone, for all the experimental conditions tested and biological endpoints investigated. When radiofrequency exposure was followed by MMC treatment, 3 h pre-exposure did not modify MMC-induced micronuclei. Pre-exposure of 20 h at 0.3 W/kg did not modify the number of micronuclei induced by MMC, while 1.25 W/kg resulted in a significant reduction of MMC-induced damage. Absence of effects was also detected when CW was used, at both SAR levels. MMC-induced ROS formation resulted significantly decreased at both SAR levels investigated, while cell proliferation and cell cycle progression were not affected by coexposures. The results here reported provide no evidence of direct effects of 1950 MHz, LTE signal. Moreover, they further support our previous findings on the capability of radiofrequency pre-exposure to induce protection from a subsequent toxic treatment, and the key role of the modulated signals and the experimental conditions adopted in eliciting the effect.  相似文献   
74.
75.
Acute stimulation of chromaffin cells in cultures with acetylcholine (ACh), 1,1-dimethyl-4-phenylpiperazinium (DMPP), or high potassium gave rise to a significant increase in the release of [Met5]-enkephalin immunoreactive material (ME-IRM) into the assay medium. The cellular content of ME-IRM following the actual release induced by these secretagogues remained constant suggesting the replenishment of the cellular peptides. The repletion of the peptides may occur through an enhancement of the processing rate of the proenkephalin precursor. Furthermore, the increase in secretion as well as the repletion of the cellular ME-IRM were calcium-dependent and were inhibited by the nicotinic receptor antagonist, hexamethonium, but not by atropine. These results indicate that secretion and repletion of the peptides are tightly coupled and activated by nicotinic receptor stimulation.  相似文献   
76.
This study examined the effects of p53 gene status on DNA damage-induced cell death and chemosensitivity to various chemotherapeutic agents in non-small cell lung cancer (NSCLC) cells. A mutant p53 gene was introduced into cells carrying the wild-type p53 gene and also vice versa to introduce the wild-type p53 gene into cells carrying the mutant p53 gene. Chemosensitivity and DNA damage-induced apoptosis in these cells were then examined. This study included five cell lines, NCI-H1437, NCI-H727, NCI-H441 and NCI-H1299 which carry a mutant p53 gene and NCI-H460 which carries a wild-type p53 gene. Mutant p53-carrying cells were transfected with the wild-type p53 gene, while mutant p53 genes were introduced into NCI-H460 cells. These p53 genes were individually mutated at amino acid residues 143, 175, 248 and 273. The representative cell line NCI-H1437 cells transfected with wild-type p53 gene (H1437/wtp53) showed a dramatic increase in susceptibility to three anticancer agents (7-fold to cisplatin, 21-fold to etoposide, and 20-fold to camptothecin) compared to untransfected or neotransfected H1437 cells. An increase in chemosensitivity was also observed in wild-type p53 transfectants of H727, H441, H1299 cells. The results of chemosensitivity were consistent with the observations on apoptotic cell death. H1437/wtp53 cells, but not H1437 parental cells, exhibited a characteristic feature of apoptotic cell death that generated oligonucleosomal-sized DNA fragments. In contrast, loss of chemosensitivity and lack of p53-mediated DNA degradation in response to anticancer agents were observed in H460 cells transfected with mutant p53. These observations suggest that the increase in chemosensitivity was attributable to wild-type p53 mediation of the process of apoptosis. In addition, our results also suggest that p53 gene status modulates the extent of chemosensitivity and the induction of apoptosis by different anticancer agents in NSCLC cells.  相似文献   
77.
Time-dependent changes in blood cholinesterase activity caused by single intravenous, oral or dermal administration of methyl parathion to adult female rats were defined. Intravenous and oral administration of 2.5 mg/kg methyl parathion resulted in rapid (<60 min) decreases in cholinesterase activity which recovered fully in vivo within 30-48 h. In contrast, spontaneous reactivation of cholinesterase in vitro was complete within 6 h at 37 degrees C. Dermal administration of methyl parathion caused dose-dependent inhibition of cholinesterase activity which developed slowly (> or =6 h) and was prolonged (> or =48 h). Time- and route-dependent effects of methyl parathion on cholinesterase activity in brain and other tissues generally paralleled its effects on activity in blood. In conclusion, pharmacodynamics of methyl parathion differ substantially with route of exposure. Recovery of cholinesterase in vivo after intravenous or oral exposure may partially reflect spontaneous reactivation and suggests a rapid clearance of methyl parathion or its active metabolite methyl paraoxon. The more gradual and prolonged inhibition of cholinesterase caused by dermal administration is consistent with disposition of methyl parathion at a site from which it or methyl paraoxon is only slowly distributed. Thus, dermal exposure to methyl parathion may pose the greatest risk for long-term adverse effects.  相似文献   
78.
Genistein effects on growth and cell cycle ofCandida albicans   总被引:7,自引:0,他引:7  
Microbial virulence is generally considered to be multifactorial with infection resulting from the sum of several globally regulated virulence factors. Estrogen may serve as a signal for global virulence induction in Candida albicans. Nonsteroidal estrogens and estrogen receptor antagonists may therefore have interesting effects on yeast and their virulence factors. Growth of C. albicans was monitored by viable plate counts at timed intervals after inoculation into yeast nitrogen broth plus glucose. To determine if increased growth of yeast in the presence of estradiol was due to tyrosine kinase-mediated signaling, we measured growth in the presence of genistein, estradiol or genistein plus estradiol and compared these conditions to controls, which were not supplemented with either compound. Unexpectedly, genistein stimulated growth of C. albicans. In addition, genistein was found to increase the rate of germination (possibly reflecting release from G(0) into G(1) cell cycle phase) and also increased Hsp90 expression, demonstrated by a dot blot technique which employed a commercial primary antibody detected with chemiluminescence with horseradish peroxidase-labeled secondary antibody. These biological effects may be attributable to genistein's activity as a phytoestrogen. In contrast, nafoxidine suppressed growth of Candida and mildly diminished Hsp90 expression. This study raises the possibility of receptor cross-talk between estrogen and isoflavinoid compounds, and antiestrogens which may affect the same signaling system, though separate targets for each compound were not ruled out.  相似文献   
79.
The apparent half life for metabolic turnover of glycerophospholipids in the myelin sheath, as determined by measuring the rate of loss of label in a myelin glycerophospholipid following radioactive precursor injection, varies with the radioactive precursor used, age of animal, and time after injection during which metabolic turnover is studied. Experimental strategies for resolving apparent inconsistencies consequent to these variables are discussed. Illustrative data concerning turnover of phosphatidylcholine (PC) in myelin of rat brain are presented. PC of the myelin membrane exhibits heterogeneity with respect to metabolic turnover rates. There are at least two metabolic pools of PC in myelin, one with a half life of the order of days, and another with a half life of the order of weeks. To a significant extent biphasic turnover is due to differential turnover of individual molecular species (which differ in acyl chain composition). The two predominant molecular species of myelin PC turnover at very different rates (16:0, 18:1 PC turning over several times more rapidly than 18:0, 18:1 PC). Therefore, within the same membrane, individual molecular species of a phospholipid class are metabolized at different rates. Possible mechanisms for differential turnover of molecular species are discussed, as are other factors that may contribute to a multiphasic turnover of glycerophospholipids.Special issue dedicated to Dr. Marjorie Lees.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号