首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   16篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   3篇
  2016年   4篇
  2015年   11篇
  2014年   11篇
  2013年   10篇
  2012年   17篇
  2011年   10篇
  2010年   14篇
  2009年   11篇
  2008年   15篇
  2007年   14篇
  2006年   13篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1995年   3篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1975年   6篇
  1974年   2篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
  1953年   2篇
  1952年   1篇
  1951年   1篇
  1947年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
41.
42.
43.
44.
Nicole Pfleger 《BBA》2009,1787(6):697-11946
Proteins of the proteorhodopsin (PR) family are found abundantly in many marine bacteria in the photic zone of the oceans. They are colour-tuned to their environment. The green absorbing species has been shown to act as a light-driven proton pump and thus could form a potential source of energy. The pKa of the primary proton acceptor is close to the pH of seawater which could also indicate a regulatory role. Here, we review and summarize our own recent findings in the context of known data and present some new results. Proton transfer in vitro by PR is shown by a fluorescence assay which confirms a pH dependent vectoriality. Previously reported low diffracting 2D crystal preparations of PR are assessed for their use for solid-state NMR by two dimensional 13C-13C DARR spectra. 15N-1H HETCOR MAS NMR experiments show bound water in the vicinity of the protonated Schiff base which could play a role in proton transfer. The effect of highly conserved H75 onto the properties of the chromophore has been investigated by single site mutations. They do show a pronounced effect onto the optical absorption maximum and the pKa of the proton acceptor but have only a small effect onto the 15N chemical shifts of the protonated Schiff base.  相似文献   
45.
Journal of Industrial Microbiology & Biotechnology - Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing...  相似文献   
46.
The predominant strategy for using algae to produce biofuels relies on the overproduction of lipids in microalgae with subsequent conversion to biodiesel (methyl-esters) or green diesel (alkanes). Conditions that both optimize algal growth and lipid accumulation rarely overlap, and differences in growth rates can lead to wild species outcompeting the desired lipid-rich strains. Here, we demonstrate an alternative strategy in which cellulose contained in the cell walls of multicellular algae is used as a feedstock for cultivating biofuel-producing microorganisms. Cellulose was extracted from an environmental sample of Cladophora glomerata-dominated periphyton that was collected from Lake Mendota, WI, USA. The resulting cellulose cake was hydrolyzed by commercial enzymes to release fermentable glucose. The hydrolysis mixture was used to formulate an undefined medium that was able to support the growth, without supplementation, of a free fatty acid (FFA)-overproducing strain of Escherichia coli (Lennen et. al 2010). To maximize free fatty acid production from glucose, an isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible vector was constructed to express the Umbellularia californica acyl-acyl carrier protein (ACP) thioesterase. Thioesterase expression was optimized by inducing cultures with 50 μM IPTG. Cell density and FFA titers from cultures grown on algae-based media reached 50% of those (~90 μg/mL FFA) cultures grown on rich Luria-Bertani broth supplemented with 0.2% glucose. In comparison, cultures grown in two media based on AFEX-pretreated corn stover generated tenfold less FFA than cultures grown in algae-based media. This study demonstrates that macroalgal cellulose is a potential carbon source for the production of biofuels or other microbially synthesized compounds.  相似文献   
47.
48.
Management of common root rot (Aphanomyces euteiches Drechs.) in peas (Pisum sativum L.) is sought primarily by host crop avoidance for several years. Soil compaction is known to aggravate A. euteiches disease in peas but effects on infection and subsequent symptom development are not sufficiently known to assist in cultural control. Several isolated observations have noted that oat crop residues may suppress A. euteiches infection and disease in pea roots. The individual and combined influence (a factorial combination of two factors each at two levels) of a prior oat crop and soil compaction were studied for their effects on common root rot severity in processing peas grown in an A. euteiches disease nursery on a fine-textured soil in the northern Corn Belt of the USA. A previous crop of summer oats relative to prior-year peas significantly suppressed common root rot and increased pea fresh vine weight 210% at peak bloom stage. Both fresh vine weight and green pea yield were reduced as much as 63% by soil compaction and increased as much as 48% by a prior oat crop. Greater soil bulk density at the 10 to 25-cm depth identified wheel traffic compaction patterns in each year. A 10-fold reduction of saturated hydraulic conductivity in the 10 to 25-cm compacted zone and high soil-water potentials within the upper 60 cm both confirmed an impaired water drainage, especially during infiltration events. These observations support the use of a previous full season or summer oat crop jointly with chisel plowing, plus the prevention of excessive traffic during secondary tillage and planting, to reduce common root rot in a field infested with A. euteiches. Shallow incorporation of oat shoot and root residue by chiseling could be a crucial component of the cultural control of the disease. R Rodriguez Kabana Section editor  相似文献   
49.
50.
Hard carbons are considered among the most promising anode materials for Na‐ion batteries. Understanding their structure is of great importance for optimizing their Na storage capabilities and therefore achieving high performance. Herein, carbon nanofibers (CNFs) are prepared by electrospinning and their microstructure, texture, and surface functionality are tailored through carbonization at various temperatures ranging from 650 to 2800 °C. Stepwise carbonization gradually removes the heteroatoms and increases the graphitization degree, enabling us to monitor the corresponding electrochemical performance for establishing a correlation between the CNFs characteristics and Na storage behavior. Outstandingly, it is found that for CNFs carbonized at above 2000 °C, a single voltage Na uptake plateau at ≈0.1 V with a capacity of ≈200 mAh g‐1. This specific performance may be nested in the higher degree of graphitization, lower active surface area, and different porous texture of the CNFs at such temperatures. It is demonstrated via the assembly of a CNF/Na2Fe2(SO4)3 cell the benefit of such CNFs electrode for enhancing the energy density of full Na‐ion cells. This finding sheds new insights in the quest for high performance carbon based anode materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号