首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   16篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   3篇
  2016年   4篇
  2015年   11篇
  2014年   11篇
  2013年   10篇
  2012年   17篇
  2011年   10篇
  2010年   14篇
  2009年   11篇
  2008年   15篇
  2007年   14篇
  2006年   13篇
  2005年   7篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1995年   3篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1988年   2篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1975年   6篇
  1974年   2篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1964年   1篇
  1953年   2篇
  1952年   1篇
  1951年   1篇
  1947年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
101.
The Antirrhinum majus transposon Tam3 undergoes low temperature-dependent transposition (LTDT). Growth at 15 degrees C permits transposition, whereas growth at 25 degrees C strongly suppresses it. The degree of Tam3 DNA methylation is altered somatically and positively correlated with growth temperature, an exceptional epigenetic system in plants. Using a Tam3-inactive line, we show that methylation change depends on Tam3 activity. Random binding site selection analysis and electrophoretic mobility shift assays revealed that the Tam3 transposase (TPase) binds to the major repeat in the subterminal regions of Tam3, the site showing the biggest temperature-dependent change in methylation state. Methylcytosines in the motif impair the binding ability of the TPase. Proteins in a nuclear extract from plants grown at 15 degrees C but not 25 degrees C bind to this motif in Tam3. The decrease in Tam3 DNA methylation at low temperature also requires cell division. Thus, TPase binding to Tam3 occurs only during growth at low temperature and immediately after DNA replication, resulting in a Tam3-specific decrease in methylation of transposon DNA. Consequently, the Tam3 methylation level in LTDT is regulated by Tam3 activity, which is dependent on the ability of its TPase to bind DNA and affected by growth temperature. Thus, the methylation/demethylation of Tam3 is the consequence, not the cause, of LTDT.  相似文献   
102.
103.
104.
The microbial production of free fatty acids (FFAs) and reduced derivatives is an attractive process for the renewable production of diesel fuels. Toward this goal, a plasmid-free strain of Escherichia coli was engineered to produce FFAs by integrating three copies of a thioesterase gene from Umbellularia californica (BTE) under the control of an inducible promoter onto the chromosome. In batch culture, the resulting strain produced identical titers to a previously reported strain that expressed the thioesterase from a plasmid. The growth rate, glucose consumption rate, and FFA production rate of this strain were studied in continuous cultivation under carbon limitation. The highest yield of FFA on glucose was observed at a dilution rate of 0.05 h(-1) with the highest specific productivity observed at a dilution rate of 0.2 h(-1). The observed yields under the lowest dilution rate were 15% higher than that observed in batch cultures. An increase in both productivity and yield (≈ 40%) was observed when the composition of the nutrients was altered to shift the culture toward non-carbon limitation. A deterministic model of the production strain has been proposed and indicates that maintenance requirements for this strain are significantly higher than wild-type E. coli.  相似文献   
105.
Petrobactin, a mixed catechol-carboxylate siderophore, is required for full virulence of Bacillus anthracis, the causative agent of anthrax. The asbABCDEF operon encodes the biosynthetic machinery for this secondary metabolite. Here, we show that the function of five gene products encoded by the asb operon is necessary and sufficient for conversion of endogenous precursors to petrobactin using an in vitro system. In this pathway, the siderophore synthetase AsbB catalyzes formation of amide bonds crucial for petrobactin assembly through use of biosynthetic intermediates, as opposed to primary metabolites, as carboxylate donors. In solving the crystal structure of the B. anthracis siderophore biosynthesis protein B (AsbB), we disclose a three-dimensional model of a nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. Structural characteristics provide new insight into how this bifunctional condensing enzyme can bind and adenylate multiple citrate-containing substrates followed by incorporation of both natural and unnatural polyamine nucleophiles. This activity enables formation of multiple end-stage products leading to final assembly of petrobactin. Subsequent enzymatic assays with the nonribosomal peptide synthetase-like AsbC, AsbD, and AsbE polypeptides show that the alternative products of AsbB are further converted to petrobactin, verifying previously proposed convergent routes to formation of this siderophore. These studies identify potential therapeutic targets to halt deadly infections caused by B. anthracis and other pathogenic bacteria and suggest new avenues for the chemoenzymatic synthesis of novel compounds.  相似文献   
106.
Cyanobacteria are valuable organisms for studying the physiology of photosynthesis and carbon fixation, as well as metabolic engineering for the production of fuels and chemicals. This work describes a novel counter selection method for the cyanobacterium Synechococcus sp. PCC 7002 based on organic acid toxicity. The organic acids acrylate, 3-hydroxypropionate, and propionate were shown to be inhibitory towards Synechococcus sp. PCC 7002 and other cyanobacteria at low concentrations. Inhibition was overcome by a loss of function mutation in the gene acsA, which is annotated as an acetyl-CoA ligase. Loss of AcsA function was used as a basis for an acrylate counter selection method. DNA fragments of interest were inserted into the acsA locus and strains harboring the insertion were isolated on selective medium containing acrylate. This methodology was also used to introduce DNA fragments into a pseudogene, glpK. Application of this method will allow for more advanced genetics and engineering studies in Synechococcus sp. PCC 7002 including the construction of markerless gene deletions and insertions. The acrylate counter-selection could be applied to other cyanobacterial species where AcsA activity confers acrylate sensitivity (e.g. Synechocystis sp. PCC 6803).  相似文献   
107.
108.
109.
Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors.  相似文献   
110.
The polarization of cells is essential for the proper functioning of most organs. Planar Cell Polarity (PCP), the polarization within the plane of an epithelium, is perpendicular to apical-basal polarity and established by the non-canonical Wnt/Fz-PCP signaling pathway. Within each tissue, downstream PCP effectors link the signal to tissue specific readouts such as stereocilia orientation in the inner ear and hair follicle orientation in vertebrates or the polarization of ommatidia and wing hairs in Drosophila melanogaster. Specific PCP effectors in the wing such as Multiple wing hairs (Mwh) and Rho Kinase (Rok) are required to position the hair at the correct position and to prevent ectopic actin hairs. In a genome-wide screen in vitro, we identified Combover (Cmb)/CG10732 as a novel Rho kinase substrate. Overexpression of Cmb causes the formation of a multiple hair cell phenotype (MHC), similar to loss of rok and mwh. This MHC phenotype is dominantly enhanced by removal of rok or of other members of the PCP effector gene family. Furthermore, we show that Cmb physically interacts with Mwh, and cmb null mutants suppress the MHC phenotype of mwh alleles. Our data indicate that Cmb is a novel PCP effector that promotes to wing hair formation, a function that is antagonized by Mwh.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号