首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   28篇
  2023年   6篇
  2022年   13篇
  2021年   18篇
  2020年   20篇
  2019年   50篇
  2018年   23篇
  2017年   19篇
  2016年   19篇
  2015年   20篇
  2014年   36篇
  2013年   40篇
  2012年   39篇
  2011年   30篇
  2010年   8篇
  2009年   12篇
  2008年   13篇
  2007年   21篇
  2006年   13篇
  2005年   5篇
  2004年   12篇
  2003年   4篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1966年   1篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
  1955年   1篇
  1953年   1篇
排序方式: 共有473条查询结果,搜索用时 78 毫秒
361.
Although less studied than interspecific interactions, interactions among members of the same species can influence space use and temporal activity. Using techniques commonly applied to the analysis of interspecific interactions—multispecies occupancy modeling and the analysis of temporal activity patterns—we studied intraspecific interactions within a high‐density population of Persian leopards (Panthera pardus saxicolor) in Tandoureh National Park, northeastern Iran. Using camera‐trap data, we investigated spatiotemporal interactions between male leopards, lone female leopards, and families (cubs/females with cubs). While we hypothesized that male and female leopards would display different temporal activity patterns, we did not predict spatial avoidance between these groups. We also predicted that leopard families would exhibit spatiotemporal avoidance from male leopards due to the risk of infanticide. Contrary to our expectations, we did not find any evidence for spatial or temporal avoidance between leopard families and adult male leopards. Male and lone female leopards exhibited positive pairwise co‐occurrence, consistent with reports of high overlap between male and female leopard home ranges. While a high level of overlap in temporal activity patterns was found between males/lone females and males/families, there was evidence for variation in the proportion of time each leopard group was active in particular periods of the diel cycle. Male leopards showed cathemeral activity, while lone females and families were more active during daylight hours. The application of these techniques to interactions within a species has improved understanding of the ecology and behavior of this endangered solitary carnivore.  相似文献   
362.
We examined effects of a plant polyphenolic compound, curcumin, against fluoride-induced oxidative stress in the rat brain. Five experimental groups of male rats (10 animals each) were compared. Animals of these experimental groups were treated with curcumin (10 and 20 mg/kg body mass), vitamin C (10 mg/kg), and sample solvent (0.5 ml) for a week prior to sodium fluoride intoxication. After treatment, rats of the experimental groups, except for the normal control group, were intoxicated with sodium fluoride (600 ppm through drinking water) for a week. Then, brains were collected and homogenized, and activities of superoxide dismutase and catalase and levels of reduced glutathione and lipid peroxidation final products were evaluated in the brain tissue homogenates. Treatment with curcumin prior to fluoride intoxication significantly normalized the above biochemical parameters; the intensity of protective effects of 20 mg/kg curcumin was close to that of vitamin C.  相似文献   
363.
This study was conducted to develop sequential sampling plans to estimate leafmine density by Liriomyza sativae (Blanchard) at two fixed-precision levels in a cucumber greenhouse. The within-greenhouse spatial patterns of leafmines were aggregated. The slopes and intercepts of Taylor’s power law did not differ between years. A fixed-precision level sampling plan was developed using the parameters of Taylor’s power law generated from total number of leafmines in a cucumber leaf at two precision levels (D) of 0.1 and 0.25. The resulting sampling plans were tested with sequential bootstrap simulations (n = 500) using 10 independent data sets for validation. Bootstrap simulation within a wide range of densities demonstrated that actual D′ values at desired D = 0.25 averaged less than or equal to 0.25 in all cases. Even at the lowest density of leafmine (0.27 mine per leaf), the actual mean D′ was 0.24 at D = 0.25. This result shows that the sampling plan developed in this study is effective and reliable for estimating the mine densities in cucumber greenhouses.  相似文献   
364.
Molecular Biology Reports - Plasmacytoma variant translocation 1 (PVT1) is a newly discovered long non-coding RNA, which has not been previously studied in the inflammatory responses of the...  相似文献   
365.
Radiotherapy and chemotherapy are two famous modalities in tumor-targeted therapy that lead to systemic and local toxicities for normal tissues. Moreover, several studies have confirmed that exposure of the tumor to radiation or chemotherapy drugs stimulate some signaling pathways in the tumor microenvironment (TME), leading to resistance of cancer cells to apoptosis, as well as promoting angiogenesis and tumor growth. Nuclear factor kappa B (NF-κB) plays a central role in the regulation of inflammatory responses in both normal tissues and tumors via the release of several cytokines, regulation of prostaglandins, reduction/oxidation (redox) reactions, angiogenesis, and cell death. Upregulation of NF-κB in normal tissues causes an appearance of inflammatory reactions and oxidative stress, whereas it regulates angiogenesis and suppresses apoptosis, leading to resistance to subsequent doses of radiation or chemotherapy. Selective inhibition of NF-κB in experimental studies has shown promising results for tumor sensitization via apoptosis induction, inhibition of angiogenesis, and increasing delay of tumor growth. The use of some agents for NF-κB inhibition has been shown to alleviate radiation/chemotherapy toxicities in normal cells/ tissues. In this current review, we explained the pivotal role of NF-κB in both normal tissue toxicity and tumor resistance. We also discussed the promising strategies for overcoming these problems with regard to chemotherapy and radiotherapy.  相似文献   
366.
Cancer remains among the most challenging human diseases. Several lines of evidence suggest that carcinogenesis is a complex process that is initiated by DNA damage. Exposure to clastogenic agents such as heavy metals, ionizing radiation (IR), and chemotherapy drugs may cause chronic mutations in the genomic material, leading to a phenomenon named genomic instability. Evidence suggests that genomic instability is responsible for cancer incidence after exposure to carcinogenic agents, and increases the risk of secondary cancers following treatment with radiotherapy or chemotherapy. Melatonin as the main product of the pineal gland is a promising hormone for preventing cancer and improving cancer treatment. Melatonin can directly neutralize toxic free radicals more efficiently compared with other classical antioxidants. In addition, melatonin is able to regulate the reduction/oxidation (redox) system in stress conditions. Through regulation of mitochondrial nction and inhibition of pro-oxidant enzymes, melatonin suppresses chronic oxidative stress. Moreover, melatonin potently stimulates DNA damage responses that increase the tolerance of normal tissues to toxic effect of IR and may reduce the risk of genomic instability in patients who undergo radiotherapy. Through these mechanisms, melatonin attenuates several side effects of radiotherapy and chemotherapy. Interestingly, melatonin has shown some synergistic properties with IR and chemotherapy, which is distinct from classical antioxidants that are mainly used for the alleviation of adverse events of radiotherapy and chemotherapy. In this review, we describe the anticarcinogenic effects of melatonin and also its possible application in clinical oncology.  相似文献   
367.
The deformability of a cell is the direct result of a complex interplay between the different constituent elements at the subcellular level, coupling a wide range of mechanical responses at different length scales. Changes to the structure of these components can also alter cell phenotype, which points to the critical importance of cell mechanoresponse for diagnostic applications. The response to mechanical stress depends strongly on the forces experienced by the cell. Here, we use cell deformability in both shear-dominant and inertia-dominant microfluidic flow regimes to probe different aspects of the cell structure. In the inertial regime, we follow cellular response from (visco-)elastic through plastic deformation to cell structural failure and show a significant drop in cell viability for shear stresses >11.8 kN/m2. Comparatively, a shear-dominant regime requires lower applied stresses to achieve higher cell strains. From this regime, deformation traces as a function of time contain a rich source of information including maximal strain, elastic modulus, and cell relaxation times and thus provide a number of markers for distinguishing cell types and potential disease progression. These results emphasize the benefit of multiple parameter determination for improving detection and will ultimately lead to improved accuracy for diagnosis. We present results for leukemia cells (HL60) as a model circulatory cell as well as for a colorectal cancer cell line, SW480, derived from primary adenocarcinoma (Dukes stage B). SW480 were also treated with the actin-disrupting drug latrunculin A to test the sensitivity of flow regimes to the cytoskeleton. We show that the shear regime is more sensitive to cytoskeletal changes and that large strains in the inertial regime cannot resolve changes to the actin cytoskeleton.  相似文献   
368.
Journal of Plant Growth Regulation - Improving soil microbial activity and using microbial synergistic relations, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria...  相似文献   
369.
Tumor microenvironment (TME) could impose a great challenge for cancer targeted therapies. Immunosuppression within the TME creates a barrier between cancer cells and therapeutic approaches. A number of cells are hosted within this milieu, among them cancer-associated fibroblasts (CAFs) are the most abundant cell populations playing major roles in mediating an immunosuppressive TME. CAFs have cross-talks with almost all cells within the TME for reprogramming them into being tumorigenic. This reprogramming reduces the pre-existing tumor immunity and dampens the efficacy of chemotherapeutic approaches. CAFs would do this through releasing a myriad of factors to the TME making it an appropriate nest for tumor growth. The cells degrade and deposit extracellular matrix components, both of which are tumorigenic. Therefore, disruption of cross-talks between CAFs with other cells within the TME would be a promising approach in cancer targeted therapies. This approach is applicable through dampening dominant signals mediated by CAFs. Another interesting approach would be reprogramming of CAFs toward their normal counterpart. This would need identification of different subtypes for these cells and their functions. More knowledge is also required about selective markers for each CAF subtype.  相似文献   
370.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号