首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   81篇
  国内免费   1篇
  914篇
  2023年   3篇
  2022年   13篇
  2021年   23篇
  2020年   13篇
  2019年   19篇
  2018年   18篇
  2017年   15篇
  2016年   18篇
  2015年   41篇
  2014年   54篇
  2013年   67篇
  2012年   80篇
  2011年   86篇
  2010年   51篇
  2009年   34篇
  2008年   33篇
  2007年   39篇
  2006年   30篇
  2005年   24篇
  2004年   24篇
  2003年   16篇
  2002年   20篇
  2001年   17篇
  2000年   11篇
  1999年   15篇
  1998年   6篇
  1997年   6篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   12篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1987年   10篇
  1986年   6篇
  1985年   12篇
  1984年   7篇
  1983年   7篇
  1982年   4篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1951年   1篇
排序方式: 共有914条查询结果,搜索用时 0 毫秒
71.

Background  

Cosmeceuticals are cosmetic-pharmaceutical hybrids intended to enhance health and beauty of the skin. Nanocosmeceuticals use nano-sized system for the delivery of active ingredients to the targeted cells for better penetration. In this work, nanoemulsion from palm oil esters was developed as a delivery system to produce nanocosmeceuticals. The stability of the resulting formulation was tested using various methods. In addition, the effect of components i.e. Vitamin E and Pluronic F-68 on the formulation was also studied.  相似文献   
72.
CDK5RAP2 is a human microcephaly protein that contains a γ-tubulin complex (γ-TuC)-binding domain conserved in Drosophila melanogaster centrosomin and Schizosaccharomyces pombe Mto1p and Pcp1p, which are γ-TuC-tethering proteins. In this study, we show that this domain within CDK5RAP2 associates with the γ-tubulin ring complex (γ-TuRC) to stimulate its microtubule-nucleating activity and is therefore referred to as the γ-TuRC-mediated nucleation activator (γ-TuNA). γ-TuNA but not its γ-TuC-binding-deficient mutant stimulates microtubule nucleation by purified γ-TuRC in vitro and induces extensive, γ-TuRC-dependent nucleation of microtubules in a microtubule regrowth assay. γ-TuRC bound to γ-TuNA contains NME7, FAM128A/B, and actin in addition to γ-tubulin and GCP2-6. RNA interference-mediated depletion of CDK5RAP2 impairs both centrosomal and acentrosomal microtubule nucleation, although γ-TuRC assembly is unaffected. Collectively, these results suggest that the γ-TuNA found in CDK5RAP2 has regulatory functions in γ-TuRC-mediated microtubule nucleation.  相似文献   
73.
Binding of [125I]calmodulin was characterized in highly purified synaptic plasma membrane (SPM) prepared from rat brain. By Scatchard analysis, the Ca2+-dependent membrane binding of [125I]calmodulin was found to have a Bmax of 284 pmol/mg protein and an apparent affinity with a Kd of 131 nM. Kinetic analysis indicates that at 37°C, the dissociation of [125I]calmodulinmembrane complexes follows first-order reaction and consists of two components: a dissociation constant (k) of 3.7×10–1 min–1 and a half-time (t1/2) of 1.8 min for the fast component, and a k of 4.8×10–2 min–1 and a t1/2 of 14.5 min for the slow component. At 0°C, substantial dissociation still occurred, with a k of 4.5×10–2 min–1 and a t1/2 of 15.3 min for the fast component, and a k of 5.5×10–3 min–1 and a t1/2 of 125.5 min for the slow component. These data on binding affinity and dissociation kinetics are consistent with the notion that SPM can readily and rapidly associated and dissociate calmodulin. In Arrhenius analysis of temperature effects, [125I]calmodulin binding to SPM exhibits a biphasic function, with the transition temperature (Td) estimated to be 23.8°C, suggesting that binding is influenced by lipid phase transition of the membrane. The binding of [125I]calmodulin to the synaptic membrane was found to be increased by corticosterone (10–7–10–6 M), a steroid hormone, and decreased by ethanol (50–200 mM), a centrally acting drug. Our data on the characteristics of calmodulin binding to the SPM provide groundwork for future studies on physiological and pharmacological regulation of calmodulin translocation to and from the plasma membrane in synaptic terminals.Abbreviations used CaM calmodulin - SPM synaptic plasma membrane - ATPase adenosine triphosphatase - Tris tris(hydroxymethyl)aminomethane - EGTA ethylene-bis(oxyethylenenitrilo)tetraacetic acid - SDS sodium dodecyl sulfate - TFP trifluoperazine - Kd dissociation constant - Bmax maximum binding - k first-order rate constant - t1/2 half-time - Td transition temperature  相似文献   
74.
The objective of the study was to evaluate the use of targeted multiplex Nanopore MinION amplicon re-sequencing of key Candida spp. from blood culture bottles to identify azole and echinocandin resistance associated SNPs. Targeted PCR amplification of azole (ERG11 and ERG3) and echinocandin (FKS) resistance-associated loci was performed on positive blood culture media. Sequencing was performed using MinION nanopore device with R9.4.1 Flow Cells. Twenty-eight spiked blood cultures (ATCC strains and clinical isolates) and 12 prospectively collected positive blood cultures with candidaemia were included. Isolate species included Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis, Candida tropicalis and Candida auris. SNPs that were identified on ERG and FKS genes using Snippy tool and CLC Genomic Workbench were correlated with phenotypic testing by broth microdilution (YeastOne™ Sensititre). Illumina whole-genome-sequencing and Sanger-sequencing were also performed as confirmatory testing of the mutations identified from nanopore sequencing data. There was a perfect agreement of the resistance-associated mutations detected by MinION-nanopore-sequencing compared to phenotypic testing for acquired resistance (16 with azole resistance; 3 with echinocandin resistance), and perfect concordance of the nanopore sequence mutations to Illumina and Sanger data. Mutations with no known association with phenotypic drug resistance and novel mutations were also detected.  相似文献   
75.
Enterovirus‐A71 (EV‐A71) has been associated with severe neurological forms of hand, foot, and mouth disease (HFMD). EV‐A71 infects motor neurons at neuromuscular junctions (NMJs) to invade the central nervous system (CNS). Here, we investigate the role of peripherin (PRPH) during EV‐A71 infection, a type III intermediate neurofilament involved in neurodegenerative conditions. In mice infected with EV‐A71, PRPH co‐localizes with viral particles in the muscles at NMJs and in the spinal cord. In motor neuron‐like and neuroblastoma cell lines, surface‐expressed PRPH facilitates viral entry, while intracellular PRPH influences viral genome replication through interactions with structural and non‐structural viral components. Importantly, PRPH does not play a role during infection with coxsackievirus A16, another causative agent of HFMD rarely associated with neurological complications, suggesting that EV‐A71 ability to exploit PRPH represents a unique attribute for successful CNS invasion. Finally, we show that EV‐A71 also exploits some of the many PRPH‐interacting partners. Of these, small GTP‐binding protein Rac1 represents a potential druggable host target to limit neuroinvasion of EV‐A71.  相似文献   
76.
I Teo  B Sedgwick  B Demple  B Li    T Lindahl 《The EMBO journal》1984,3(9):2151-2157
The expression of several inducible enzymes for repair of alkylated DNA in Escherichia coli is controlled by the ada+ gene. This regulatory gene has been cloned into a multicopy plasmid and shown to code for a 37-kd protein. Antibodies raised against homogeneous O6-methylguanine-DNA methyltransferase (the main repair activity for mutagenic damage in alkylated DNA) were found to cross-react with this 37-kd protein. Cell extracts from several independently derived ada mutants contain variable amounts of an altered 37-kd protein after an inducing alkylation treatment. In addition, an 18-kd protein identical with the previously isolated O6-methyl-guanine-DNA methyltransferase has been identified as a product of the ada+ gene. The smaller polypeptide is derived from the 37-kd protein by proteolytic processing.  相似文献   
77.
78.
Phosphotyrosine-binding domains, typified by the SH2 (Src homology 2) and PTB domains, are critical upstream components of signal transduction pathways. The E3 ubiquitin ligase Hakai targets tyrosine-phosphorylated E-cadherin via an uncharacterized domain. In this study, the crystal structure of Hakai (amino acids 106-206) revealed that it forms an atypical, zinc-coordinated homodimer by utilizing residues from the phosphotyrosine-binding domain of two Hakai monomers. Hakai dimerization allows the formation of a phosphotyrosine-binding pocket that recognizes specific phosphorylated tyrosines and flanking acidic amino acids of Src substrates, such as E-cadherin, cortactin and DOK1. NMR and mutational analysis identified the Hakai residues required for target binding within the binding pocket, now named the HYB domain. ZNF645 also possesses a HYB domain but demonstrates different target specificities. The HYB domain is structurally different from other phosphotyrosine-binding domains and is a potential drug target due to its novel structural features.  相似文献   
79.
The development of blended collagen and glycosaminoglycan (GAG) scaffolds can potentially be used in many soft tissue engineering applications since the scaffolds mimic the structure and biological function of native extracellular matrix (ECM). In this study, we were able to obtain novel nanofibrous collagen-GAG scaffolds by electrospinning collagen blended with chondroitin sulfate (CS), a widely used GAG, in a mixed solvent of trifluoroethanol and water. The electrospun collagen-GAG scaffold with 4% CS (COLL-CS-04) exhibited a uniform fiber structure with nanoscale diameters. A second collagen-GAG scaffold with 10% CS consisted of smaller diameter fibers but exhibited a broader diameter distribution due to the different solution properties in comparison with COLL-CS-04. After cross-linking with glutaraldehyde vapor, the collagen-GAG scaffolds became more biostable and were resistant to collagenase degradation. This is evidently a more favorable environment allowing increased proliferation of rabbit conjunctiva fibroblast on the scaffolds. Incorporation of CS into collagen nanofibers without cross-linking did not increase the biostability but still promoted cell growth. The potential of applying the nanoscale collagen-GAG scaffold in tissue engineering is significant since the nanodimension fibers made of natural ECM mimic closely the native ECM found in the human body. The high surface area characteristic of this scaffold may maximize cell-ECM interaction and promote tissue regeneration faster than other conventional scaffolds.  相似文献   
80.
Plant Cell, Tissue and Organ Culture (PCTOC) - In vitro regeneration of date palm (Phoenix dactylifera L.) plants through somatic embryogenesis leads to the generation of somaclonal variants. The...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号