首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   826篇
  免费   81篇
  国内免费   1篇
  2023年   3篇
  2022年   7篇
  2021年   23篇
  2020年   13篇
  2019年   19篇
  2018年   18篇
  2017年   15篇
  2016年   18篇
  2015年   41篇
  2014年   54篇
  2013年   67篇
  2012年   80篇
  2011年   86篇
  2010年   51篇
  2009年   34篇
  2008年   33篇
  2007年   39篇
  2006年   30篇
  2005年   24篇
  2004年   24篇
  2003年   16篇
  2002年   20篇
  2001年   17篇
  2000年   11篇
  1999年   15篇
  1998年   6篇
  1997年   6篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   12篇
  1991年   7篇
  1990年   8篇
  1989年   8篇
  1988年   4篇
  1987年   10篇
  1986年   6篇
  1985年   12篇
  1984年   7篇
  1983年   7篇
  1982年   4篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   5篇
  1975年   3篇
  1974年   4篇
  1973年   3篇
  1972年   2篇
  1951年   1篇
排序方式: 共有908条查询结果,搜索用时 15 毫秒
21.
Kimber A  Sze H 《Plant physiology》1984,74(4):804-809
The effects of purified Helminthosporium maydis T (HmT) toxin on active Ca2+ transport into isolated mitochondria and microsomal vesicles were compared for a susceptible (T) and a resistant (N) strain of corn (Zea mays). ATP, malate, NADH, or succinate could drive 45Ca2+ transport into mitochondria of corn roots. Ca2+ uptake was dependent on the proton electrochemical gradient generated by the redox substrates or the reversible ATP synthetase, as oligomycin inhibited ATP-driven Ca2+ uptake while KCN inhibited transport driven by the redox substrates. Purified native HmT toxin completely inhibited Ca2+ transport into T mitochondria at 5 to 10 nanograms per milliliter while transport into N mitochondria was decreased slightly by 100 nanograms per milliliter toxin. Malate-driven Ca2+ transport in T mitochondria was frequently more inhibited by 5 nanograms per milliliter toxin than succinate or ATP-driven Ca2+ uptake. However, ATP-dependent Ca2+ uptake into microsomal vesicles from either N or T corn was not inhibited by 100 nanograms per milliliter toxin. Similarly, toxin had no effect on proton gradient formation ([14C]methylamine accumulation) in microsomal vesicles. These results show that mitochondrial and not microsomal membrane is a primary site of HmT toxin action. HmT toxin may inhibit formation of or dissipate the electrochemical proton gradient generated by substrate-driven electron transport or the mitochondrial ATPase, after interacting with a component(s) of the mitochondrial membrane in susceptible corn.  相似文献   
22.
Ward JM  Sze H 《Plant physiology》1992,99(3):925-931
To determine whether the detergent-solubilized and purified vacuolar H+-ATPase from plants was active in H+ transport, we reconstituted the purified vacuolar ATPase from oat roots (Avena sativa var Lang). Triton-solubilized ATPase activity was purified by gel filtration and ion exchange chromatography. Incorporation of the vacuolar ATPase into liposomes formed from Escherichia coli phospholipids was accomplished by removing Triton X-100 with SM-2 Bio-beads. ATP hydrolysis activity of the reconstituted ATPase was stimulated twofold by gramicidin, suggesting that the enzyme was incorporated into sealed proteoliposomes. Acidification of K+-loaded proteoliposomes, monitored by the quenching of acridine orange fluorescence, was stimulated by valinomycin. Because the presence of K+ and valinomycin dissipates a transmembrane electrical potential, the results indicate that ATP-dependent H+ pumping was electrogenic. Both H+ pumping and ATP hydrolysis activity of reconstituted preparations were completely inhibited by <50 nanomolar bafilomycin A1, a specific vacuolar type ATPase inhibitor. The reconstituted H+ pump was also inhibited by N,N′-dicyclohexylcarbodiimide or NO3 but not by azide or vanadate. Chloride stimulated both ATP hydrolysis by the purified ATPase and H+ pumping by the reconstituted ATPase in the presence of K+ and valinomycin. Hence, our results support the idea that the vacuolar H+-pumping ATPase from oat, unlike some animal vacuolar ATPases, could be regulated directly by cytoplasmic Cl concentration. The purified and reconstituted H+-ATPase was composed of 10 polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. These results demonstrate conclusively that the purified vacuolar ATPase is a functional electrogenic H+ pump and that a set of 10 polypeptides is sufficient for coupled ATP hydrolysis and H+ translocation.  相似文献   
23.
Conditions for the dissociation and reassembly of the multi-subunit vacuolar proton-translocating ATPase (H+-ATPase) from oat roots (Avena sativa var Lang) were investigated. The peripheral sector of the vacuolar H+-ATPase is dissociated from the membrane integral sector by chaotropic anions. Membranes treated with 0.5 molar KI lost 90% of membrane-bound ATP hydrolytic activity; however, in the presence of Mg2+ and ATP, only 0.1 molar KI was required for complete inactivation of ATPase and H+-pumping activities. A high-affinity binding site for MgATP (dissociation constant = 34 micromolar) was involved in this destabilization. The relative loss of ATPase activity induced by KI, KNO3, or KCl was accompanied by a corresponding increase in the peripheral subunits in the supernatant, including the nucleotide-binding polypeptides of 70 and 60 kilodaltons. The order of effectiveness of the various ions in reducing ATPase activity was: KSCN > KI > KNO3 > KBr > K-acetate > K2SO4 > KCl. The specificity of nucleotides (ATP > GTP > ITP) in dissociating the ATPase is consistent with the participation of a catalytic site in destabilizing the enzyme complex. Following KI-induced dissociation of the H+-ATPase, the removal of KI and MgATP by dialysis resulted in restoration of activity. During dialysis for 24 hours, ATP hydrolysis activity increased to about 50% of the control. Hydrolysis of ATP was coupled to H+ pumping as seen from the recovery of H+ transport following 6 hours of dialysis. Loss of the 70 and 60 kilodalton subunits from the supernatant as probed by monoclonal antibodies further confirmed that the H+-ATPase complex had reassembled during dialysis. These data demonstrate that removal of KI and MgATP resulted in reassociation of the peripheral sector with the membrane integral sector of the vacuolar H+-ATPase to form a functional H+ pump. The ability to dissociate and reassociate in vitro may have implications for the regulation, biosynthesis, and assembly of the vacuolar H+-ATPase in vivo.  相似文献   
24.
Auer  Martin T.  Storey  Michelle L.  Effler  Steven W.  Auer  Nancy A.  Sze  Philip 《Hydrobiologia》1990,200(1):603-617
The transparency of polluted, hypereutrophic Onondaga Lake, New York, USA has improved substantially in the late 1980's as a result of reductions in phytoplankton biomass, in the absence of significant reductions in external phosphorus loading. Much of this improvement has been due to the occurrence of clearing events, e.g. sudden and dramatic increases in transparency. Field measurements, laboratory experiments, and modelling analyses were utilized to identify processes regulating phytoplankton standing crop during the spring to fall interval of 1987. Changes in the zooplankton community documented over the past decade support the conclusion that increased zooplankton grazing has contributed to improvements in transparency. Herbivores now represent a greater fraction of the zooplankton population and more efficient cladocerans are present in greater numbers. Biomanipulation practices, e.g. reestablishment of piscivorous species, designed to reduce the abundance of planktivorous fish species in Onondaga Lake, may serve to reduce pressure on the grazing community and thus result in further improvements in transparency.  相似文献   
25.
Sze H 《Plant physiology》1982,70(2):498-505
To understand the function and membrane origin of ionophore-stimulated ATPases, the activity of nigericin-stimulated ATPase was characterized from a low-density microsomal fraction containing sealed vesicles of autonomous tobacco (Nicotiana tabacum Linnaeous cv. Wisconsin no. 38) callus. The properties of KCl-stimulated, Mg-requiring ATPases (KCl-Mg,ATPase) were similar in the absence or presence of nigericin. Nigericin (or gramicidin) stimulation of a KCl-Mg,ATPase activity was optimum at pH 6.5 to 7.0. The enzyme was inhibited completely by N,N′-dicyclohexylcarbodiimide (10 μm), tributyltin (5 μm), and partially by vanadate (200 μm), but it was insensitive to fusicoccin and mitochondrial ATPase inhibitors, such as azide (1 mm) and oligomycin (5 μg/ml). The ATPase was more sensitive to anions than cations. Cations stimulated ATPase activity with a selectivity sequence of NH4+ > K+, Rb+, Cs+, Na+, Li+ > Tris+. Anions stimulated Mg, ATPase activity with a decreasing sequence of Cl = acetate > SO42− > benzene sulfonate > NO3. The anion stimulation was caused partly by dissipation of the electrical potential (interior positive) by permeant anions and partly by a specific ionic effect. Plant membranes had at least two classes of nigericin-stimulated ATPases: one sensitive and one insensitive to vanadate. Many of the properties of the nigericin-sensitive, salt-stimulated Mg,ATPase were similar to a vanadate-sensitive plasma membrane ATPase of plant tissues, yet other properties (anion stimulation and vanadate insensitivity) resembled those of a tonoplast ATPase. These results support the idea that nigericin-stimulated ATPases are mainly electrogenic H+ pumps originated in part from the plasma membrane and in part from other nonmitochondrial membranes, such as the tonoplast.  相似文献   
26.
27.
28.
Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.  相似文献   
29.
Plant Cell, Tissue and Organ Culture (PCTOC) - In vitro regeneration of date palm (Phoenix dactylifera L.) plants through somatic embryogenesis leads to the generation of somaclonal variants. The...  相似文献   
30.
The role of herbivorous fish in threatening marine forests of temperate seas has been generally overlooked. Only recently, the scientific community has highlighted that high fish herbivory can lead to regime shifts from canopy‐forming algae to less complex turf communities. Here, we present an innovative herbivorous fish deterrent device (DeFish), which can be used for conservation and restoration of marine forests. Compared to most traditional fish exclusion systems, such as cages, the DeFish system does not need regular cleaning and maintenance, making it more cost‐efficient. Resistance of DeFish was tested by installing prototypes at different depths in the French Riviera and in Montenegro: more than 60% of the devices endured several years without maintenance, even if most of them were slightly damaged in the exposed site in Montenegro. The efficacy of DeFish in limiting fish herbivory was tested by an exclusion experiment on Cystoseira amentacea in the French Riviera. In a few months, the number of fish bite marks on the seaweed was decreased, causing a consequent increase in algal length. The device here presented has been conceived for Mediterranean canopy‐forming algae, but the same concept can be applied to other species vulnerable to fish herbivory, such as kelps or seagrasses. In particular, the DeFish design could be improved using more robust and biodegradable materials. Innovative engineering systems, such as DeFish, are expected to become useful tools in the conservation and restoration of marine forests, to complement other practices including active reforestation, herbivore regulation, and regular monitoring of their status.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号