首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   4篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   4篇
  2009年   8篇
  2008年   7篇
  2007年   7篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   9篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   5篇
  1990年   1篇
  1989年   2篇
  1986年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有142条查询结果,搜索用时 31 毫秒
41.
The stereoelectronic properties of several potent reversible monoamine oxidase B (MAO-B) inhibitors were studied with a view to develop a pharmacophore model for reversible MAO-B inhibition. This study suggested that important specific H-bond and hydrophobic interactions are required for potent and selective MAO-B inhibition. These requirements were applied in the design and synthesis of a novel reversible and selective MAO-B inhibitor, 3-methyl-8-(4,4,4-trifluoro-butoxy)indeno[1,2-c]pyridazin-5-one, that is ca. 7000 times more selective as an inhibitor for MAO-B than for MAO-A, with K(i(MAO-B)) in the low nanomolar range.  相似文献   
42.
Adenosine receptor antagonists that are selective for the A(2A) receptor subtype (A(2A) antagonists) are under investigation as possible therapeutic agents for the symptomatic treatment of the motor deficits associated with Parkinson's disease (PD). Results of recent studies in the MPTP mouse model of PD suggest that A(2A) antagonists may possess neuroprotective properties. Since monoamine oxidase B (MAO-B) inhibitors also enhance motor function and reduce MPTP neurotoxicity, we have examined the MAO-B inhibiting properties of several A(2A) antagonists and structurally related compounds in an effort to determine if inhibition of MAO-B may contribute to the observed neuroprotection. The results of these studies have established that all of the (E)-8-styrylxanthinyl derived A(2A) antagonists examined display significant MAO-B inhibitory properties in vitro with K(i) values in the low micro M to nM range. Included in this series is (E)-1,3-diethyl-8-(3,4-dimethoxystyryl)-7-methylxanthine (KW-6002), a potent A(2A) antagonist and neuroprotective agent that is in clinical trials. The results of these studies suggest that MAO-B inhibition may contribute to the neuroprotective potential of A(2A) receptor antagonists such as KW-6002 and open the possibility of designing dual targeting drugs that may have enhanced therapeutic potential in the treatment of PD.  相似文献   
43.
44.
Previously, treatment of Tamm-Horsfall glycoprotein (THp) from different donors with endo-beta-galactosidase has been shown to liberate a tetra- and a Sd(a)-active pentasaccharide, concluding the presence of N-linked carbohydrate chains containing additional N - acetyllactosamine units. These type of oligosaccharides were not found in a detailed structure elucidation of the carbohydrate moiety of THp of one male donor, suggesting a donor-specific feature for these type of structures. Therefore, THp was isolated from four healthy male donors and each subjected to endo-beta-galactosidase treatment in order to release these tetra- and Sd(a)-active pentasaccharide. Differences were observed in the total amount of released tetra- and Sda-active pentasaccharide of the used donors (42, 470, 478, 718 microg/100 mg THp), indicating that the presence of repeating N-acetyllactosamine units incorporated into the N-glycan moiety of THp is donor specific. Furthermore, a higher expression of the Sd(a) determinant on antennae which display N-acetyllactosamine elongation was observed, suggesting a better accessibility for the beta-N-acetylgalactosaminyltransferase. In order to characterize the N-glycans containing repeating N- acetyllactosamine units, carbohydrate chains were enzymatically released from THp and isolated. The tetraantennary fraction, which accounts for more than 33% of the total carbohydrate moiety of THp, was used to isolate oligosaccharides containing additional N - acetyllactosamine units. Five N-linked tetraantennary oligosaccharides containing a repeating N-acetyllactosamine unit were identified, varying from structures bearing four Sd(a) determinants to structures containing no Sd(a) determinant (see below). One compound was used in order to specify the branch location of the additional N- acetyllactosamine unit, and it appeared that only the Gal-6' and Gal-8' residues were occupied by a repeating N -acetyllactosamine unit.   相似文献   
45.
The demonstration that interleukin 2 (IL-2) is a lectin specific for oligomannosides allows to understand a new function for this cytokine: as a bifunctional molecule when bound to its receptor ss, IL-2 associates the latter which the CD3/TCR complex, interacting with oligosaccharides of CD3 through its carbohydrate-recognition domain (Zanetta et al. , 1996, Biochem. J., 318, 49-53). This induces the tyrosine phosphorylation of the IL-2R beta by ++p56(lck) , the first step of the IL-2-dependent signaling. Since this specific association is disrupted in vitro by oligomannosides with five and six mannose residues, we made the hypothesis that pathogenic cells or microorganisms could bind IL-2, consequently disturbing the IL-2- dependent response. This study shows that the pathogenic yeast Candida albicans (in contrast with nonpathogenic yeasts) binds high amounts of IL-2 as did cancer cells. In contrast with cancer cells, yeasts do not bind the Man6GlcNAc2-specific lectin CSL, an endogenous "amplifier of activation signals" (Zanetta et al. , 1995, Biochem. J., 311, 629-636).   相似文献   
46.
47.
48.
In Saccharomyces cerevisiae, reduction of NAD(+) to NADH occurs in dissimilatory as well as in assimilatory reactions. This review discusses mechanisms for reoxidation of NADH in this yeast, with special emphasis on the metabolic compartmentation that occurs as a consequence of the impermeability of the mitochondrial inner membrane for NADH and NAD(+). At least five mechanisms of NADH reoxidation exist in S. cerevisiae. These are: (1) alcoholic fermentation; (2) glycerol production; (3) respiration of cytosolic NADH via external mitochondrial NADH dehydrogenases; (4) respiration of cytosolic NADH via the glycerol-3-phosphate shuttle; and (5) oxidation of intramitochondrial NADH via a mitochondrial 'internal' NADH dehydrogenase. Furthermore, in vivo evidence indicates that NADH redox equivalents can be shuttled across the mitochondrial inner membrane by an ethanol-acetaldehyde shuttle. Several other redox-shuttle mechanisms might occur in S. cerevisiae, including a malate-oxaloacetate shuttle, a malate-aspartate shuttle and a malate-pyruvate shuttle. Although key enzymes and transporters for these shuttles are present, there is as yet no consistent evidence for their in vivo activity. Activity of several other shuttles, including the malate-citrate and fatty acid shuttles, can be ruled out based on the absence of key enzymes or transporters. Quantitative physiological analysis of defined mutants has been important in identifying several parallel pathways for reoxidation of cytosolic and intramitochondrial NADH. The major challenge that lies ahead is to elucidate the physiological function of parallel pathways for NADH oxidation in wild-type cells, both under steady-state and transient-state conditions. This requires the development of techniques for accurate measurement of intracellular metabolite concentrations in separate metabolic compartments.  相似文献   
49.
Sexual development is an essential phase in the Plasmodium life cycle, where male gametogenesis is an unusual and extraordinarily rapid process. It produces 8 haploid motile microgametes, from a microgametocyte within 15 minutes. Its unique achievement lies in linking the assembly of 8 axonemes in the cytoplasm to the three rounds of intranuclear genome replication, forming motile microgametes, which are expelled in a process called exflagellation. Surprisingly little is known about the actors involved in these processes. We are interested in kinesins, molecular motors that could play potential roles in male gametogenesis. We have undertaken a functional characterization in Plasmodium berghei of kinesin‐8B (PbKIN8B) expressed specifically in male gametocytes and gametes. By generating Pbkin8B‐gfp parasites, we show that PbKIN8B is specifically expressed during male gametogenesis and is associated with the axoneme. We created a ΔPbkin8B knockout cell line and analysed the consequences of the absence of PbKIN8B on male gametogenesis. We show that the ability to produce sexually differentiated gametocytes is not affected in ΔPbkin8B parasites and that the 3 rounds of genome replication occur normally. Nevertheless, the development to free motile microgametes is halted and the life cycle is interrupted in vivo. Ultrastructural analysis revealed that intranuclear mitoses are unaffected whereas cytoplasmic microtubules, although assembled in doublets and elongated, fail to assemble in the normal axonemal ‘9+2' structure and become motile. Absence of a functional axoneme prevented microgamete assembly and release from the microgametocyte, severely reducing infection of the mosquito vector. This is the first functional study of a kinesin involved in male gametogenesis. These results reveal a previously unknown role for PbKIN8B in male gametogenesis, providing new insights into Plasmodium flagellar formation.  相似文献   
50.
In the present study, a series of 3,4-dihydro-2(1H)-quinolinone derivatives were synthesized and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The 3,4-dihydro-2(1H)-quinolinone derivatives are structurally related to a series of coumarin (1-benzopyran-2-one) derivatives which have been reported to act as MAO-B inhibitors. The results document that the quinolinones are highly potent and selective MAO-B inhibitors with most homologues exhibiting IC50 values in the nanomolar range. The most potent MAO-B inhibitor, 7-(3-bromobenzyloxy)-3,4-dihydro-2(1H)-quinolinone, exhibits an IC50 value of 2.9 nM with a 2750-fold selectivity for MAO-B over the MAO-A isoform. An analysis of the structure–activity relationships for MAO-B inhibition shows that substitution on the C7 position of the 3,4-dihydro-2(1H)-quinolinone scaffold leads to significantly more potent inhibition compared to substitution on C6. In this regard, a benzyloxy substituent on C7 is more favourable than phenylethoxy and phenylpropoxy substitution on this position. It may be concluded that C7-substituted 3,4-dihydro-2(1H)-quinolinones are promising leads for the therapy of Parkinson’s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号