首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   12篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   2篇
  2016年   9篇
  2015年   15篇
  2014年   12篇
  2013年   12篇
  2012年   12篇
  2011年   15篇
  2010年   12篇
  2009年   8篇
  2008年   5篇
  2007年   12篇
  2006年   10篇
  2005年   11篇
  2004年   7篇
  2003年   8篇
  2002年   4篇
  2001年   6篇
  2000年   6篇
  1999年   5篇
  1997年   3篇
  1995年   2篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1969年   4篇
  1967年   3篇
  1966年   3篇
  1965年   1篇
  1964年   1篇
排序方式: 共有232条查询结果,搜索用时 15 毫秒
121.
Autophagy is a major nutrient recycling mechanism in plants. However, its functional connection with programmed cell death (PCD) is a topic of active debate and remains not well understood. Our previous studies established the plant metacaspase AtMC1 as a positive regulator of pathogen-triggered PCD. Here, we explored the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered PCD and aging. We observed that autophagy acts as a positive regulator of pathogen-triggered PCD in a parallel pathway to AtMC1. In addition, we unveiled an additional, pro-survival homeostatic function of AtMC1 in aging plants that acts in parallel to a similar pro-survival function of autophagy. This novel pro-survival role of AtMC1 may be functionally related to its prodomain-mediated aggregate localization and potential clearance, in agreement with recent findings using the single budding yeast metacaspase YCA1. We propose a unifying model whereby autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants, when these functions are not masked by the cumulative stresses of aging, and negatively regulating senescence in older plants.An emerging theme in cell death research is that cellular processes thought to be regulated by linear signaling pathways are, in fact, complex. Autophagy, initially considered merely a nutrient recycling mechanism necessary for cellular homeostasis, was recently shown to regulate cell death, mechanistically interacting with components that control apoptosis. Deficient autophagy can result in apoptosis1, 2, 3 and autophagy hyper-activation can also lead to programmed cell death (PCD).4 In addition, the pro-survival function of autophagy is mediated by apoptosis inhibition and apoptosis mediates autophagy, although this cross-regulation is not fully understood.5In plants, autophagy can also have both pro-survival and pro-death functions. Autophagy-deficient plants exhibit accelerated senescence,6, 7, 8 starvation-induced chlorosis,6, 7, 9 hypersensitivity to oxidative stress10 and endoplasmic reticulum stress.11 Further, autophagy-deficient plants cannot limit the spread of cell death after infection with tissue-destructive microbial infections.12, 13 The plant phytohormone salicylic acid (SA) mediates most of these phenotypes.8 Autophagy has an essential, pro-survival role in situations where there is an increasing load of damaged proteins and organelles that need to be eliminated, that is, during aging or stress. Autophagy has an opposing, pro-death role during developmentally regulated cell death14, 15 or during the pathogen-triggered hypersensitive response PCD (hereafter, HR) that occurs locally at the site of attempted pathogen attack.16, 17 The dual pro-death/pro-survival functions of plant autophagy remain a topic of active debate.Also under scrutiny are possible novel functions of caspases and caspase-like proteins as central regulators of pro-survival processes. Caspases were originally defined as executioners of PCD in animals, but increasing evidence indicates that several caspases have non-apoptotic regulatory roles in cellular differentiation, motility and in the mammalian immune system.18, 19, 20Yeast, protozoa and plants do not have canonical caspases, despite the occurrence of morphologically heterogeneous PCDs.21 More than a decade ago, distant caspase homologs termed metacaspases were identified in these organisms using structural homology searches.22 Metacaspases were classified into type I or type II metacaspases based on the presence or absence of an N-terminal prodomain, reminiscent of the classification in animals into initiator/inflammatory or executioner caspases, respectively. Despite the architectural analogy between caspases and metacaspases, differences in their structure, function, activation and mode of action exist.23, 24, 25Metacaspases mediate PCD in yeast,26, 27, 28, 29, 30, 31 leishmania,32, 33 trypanosoma34 and plants.24 We demonstrated that two type I metacaspases, AtMC1 and AtMC2, antagonistically regulate HR in Arabidopsis thaliana.35 Our work showed that AtMC1 is a positive regulator of HR and that this function is mediated by its catalytic activity and negatively regulated by the AtMC1 N-terminal prodomain. AtMC2 antagonizes AtMC1-mediated HR.Besides AtMC2, new examples of metacaspases with a pro-life/non-PCD role are emerging. Protozoan metacaspases are involved in cell cycle dynamics34, 36, 37, 38 and cell proliferation.39 The yeast metacaspase Yca1 alters cell cycle dynamics40 and interestingly, is required for clearance of insoluble protein aggregates, thus contributing to yeast fitness.41Here, we explore the linkage between plant autophagy and AtMC1 function in the context of pathogen-triggered HR and aging. Our data support a model wherein autophagy and AtMC1 are part of parallel pathways, both positively regulating HR cell death in young plants and negatively regulating senescence in older plants.  相似文献   
122.
123.
Since the events of avian influenza (AI) caused by H5N1 subtype from Hong Kong (1997), the people worldwide have been confronted with new waves of epizootic influenza. In 2005 in Romania an unprecedent H5N1 epizootic occurred in domestic and wild birds. Therefore an immediate investigation by molecular approach of this highly pathogenic H5N1 strain was necessary. The virus isolation and the RNA extraction were performed in the Institute of Diagnosis and Animal Health while PCR and sequencing were carried out in Cantacuzino Institute. Herein we report the first evidence of H5N1 presence in Romanian fowls. The phylogenetic analysis of haemagglutinin and neuraminidase gene indicated a close relationship of Romanian strains to those from Siberia and China. The virological and molecular analysis of the first strains of avian virus from Romania confirmed the presence of H5N1 subtype, belonging to the genetic line Z. These results indicate that the avian virus from this genetic line is directly derived from the highly pathogenic viruses isolated in China and Russia in 2005.  相似文献   
124.
Morphological plasticity was studied for advanced regeneration trees in different light environments of the mountainous, mixed-species forests in the Carpathian Mountains of Romania. The primary species in these mixtures were very shade tolerant silver fir (Abies alba Mill.) and European beech (Fagus sylvatica L.), and midtolerant Norway spruce (Picea abies (L.) Karst). Seedlings/saplings of these species were selected for measurements in different stands from two different geographical locations. Various morphological traits (specific leaf area, live crown ratio, crown width to length ratio, terminal to lateral ratio, number of internodal shoots, number of shoots in terminal whorl, stem symmetry, stem orientation, stem forking) for each regenerating tree were measured during summers of 2001 and 2002. Percentage of above canopy light and stand basal area measures were used to assess the available growing space for each seedling/sapling. Regression relationships were developed for the different morphological indicators as a function of these two variables. All species adapted their morphology along the gradient in light and basal area. Spruce seemed to be less adapted to low light conditions than both fir and beech. However, no significant differences in terms of shade tolerance were detected using the above indicators. In really dense stand conditions (less than 20% above canopy light and stand basal area above 36 m2 ha−1), probability for stem forking in beech increased. In open, all three species adapted their morphology for vigorous growth. Under such conditions, spruce was better adapted than fir.  相似文献   
125.
Using Time Domain 1H Nuclear Magnetic Resonance with H217O (H217O-TD-1HNMR), we found [H217O]- and pH-controlled chiral differences in proton exchange properties in alanine (Ala) and asparagine (Asn). To minimize and equalize chemical impurities, Asn enantiomers were purified by crystallization from racemic solution. At <0.1 M H217O, a shift in isoelectric pH (pI) occurred, ~1.14 kJ mol−1 l-d-Asn ΔΔG o′ in the 5.91–6.42 pH range. One potential source for this asymmetry is the enantio-different magnetic moments (lμ↑ ≠ dμ↓) produced by neutral ring currents in the chiral center, leading to enantio-different nuclear spin organization and charge distribution in the amino group. At ≥pI, dissimilar interactions may occur in the hydration of the amino group with H217O (NH2/H217O ≠ NH2/H216O; NH3 +/H217O ≠ NH2/H217O; l-*C-NH2/H217O ≠ d-*C-NH2/H217O). As lμ↑ ≠ dμ↓, the l-*C-amino and the d-*C-amino groups are diastereo spin-isomers. The nuclear spin of 17O may be parallel or antiparallel with the ortho-1H1H pair; hence two ortho-H217O molecules exist, also diastereo spin-isomers. As the pK of H217O is different from H216O, dissimilarities between l-*C- and d-*C-amino groups are converted into proton exchange differences. During H217O-TD-1HNMR, the H217O molecule is a “probe” of the state of the amino group. Regarding prebiotic evolution: prebiotic chirality may not require stochastic symmetry breaking or preexisting chiral conditions; chemical chiral effects due to lμ↑ ≠ dμ↓ are small and need chiral amplification to generate an enantiomeric excess significant for prebiotic evolution; and prebiotic symmetry breaking was homochiral because the effect of lμ↑ and dμ↓ on the amino group should be similar in all alpha amino acids.  相似文献   
126.
To demonstrate the usefulness of enzyme-linked immunosorbent assay for serodiagnosis of mycobacterioses due to environmental mycobacteria we utilized a panel of glycolipid antigens selective for Mycobacterium avium-intracellulare, Mycobacterium kansasii, Mycobacterium xenopi, Mycobacterium scrofulaceum and Mycobacterium gordonae. The levels of circulating antibodies were determined against the environmental mycobacteria, and Mycobacterium tuberculosis in human immunodeficiency virus-negative and -positive patient sera. The method used immunomagnetic separation of the antigens, with covalent immobilization of antibodies to superparamagnetic amine and carboxyl terminated particles in solutions of the specific antigens. Enzyme-linked immunosorbent assay was performed on 195 patient sera: 34 with infections due to environmental mycobacteria, 114 with tuberculosis, 47 with other respiratory diseases. There were 46 human immunodeficiency virus-1 infected individuals. Among the 34 infections due to environmental mycobacteria, 9 patients were singularly infected with an environmental mycobacterium, and 25 co-infected with both M. tuberculosis and an environmental mycobacterium. Sensitivity, specificity and false positivity ranges were determined for each of the volunteer groups: tuberculosis positive, human immunodeficiency virus negative; tuberculosis positive, human immunodeficiency virus positive; those with infections due to individual environmental mycobacteria (such as M. scrofulaceum and M. kansasii); and those with other respiratory diseases. We demonstrate that such multiple assays, can be useful for the early diagnosis of diverse environmental mycobacterial infections to allow the start of treatment earlier than henceforth.  相似文献   
127.
The synergism of infection with conventional cardiovascular risk factors in atherosclerosis is much debated. We hypothesized that coronary arterial injury correlates with infection recurrence and pathogen burden and is further aggravated by hypercholesterolemia. Forty-two G?ttingen minipigs were assigned to repeated intratracheal inoculation of PBS, Chlamydia pneumoniae (Cpn), or both Cpn and influenza virus at 8, 11, and 14 wk of age. Animals were fed either standard or 2% cholesterol diet (chol-diet). At 19 wk of age coronary vasomotor responses to acetylcholine (ACh) and adenosine were assessed in vivo and blood and tissue samples were collected. Nonparametric tests were used to compare the groups. In cholesterol-fed animals, total cholesterol/HDL was significantly increased in infected animals compared with noninfected animals [3.13 (2.17-3.38) vs. 2.03 (1.53-2.41), respectively; P = 0.01]. C-reactive protein (CRP) rose in infected animals [10.60 (4.96-18.00) vs. 2.47 (1.44-3.01) μg/ml in noninfected; P < 0.01] without significant difference between the mono- and coinfected groups. Among coinfected animals, both CRP and haptoglobin were lower in those fed chol-diet than in those fed standard diet (P < 0.05). The vasoconstricting response to ACh was most prominent in coinfected animals {769.3 (594-1,129) cm; P = 0.03 vs. noninfected [342 (309-455) cm] and P = 0.07 vs. monoinfected [415 (252.5-971.8) cm]}. Among monoinfected animals, similar to CRP, a trend for less vasoconstriction was observed in those fed chol-diet (P = 0.08). Coinfection of piglets appears to be associated with more pronounced coronary muscarinic vasomotor dysfunction. In monoinfected animals, use of chol-diet seems to dampen both coronary dysfunction and systemic inflammation induced by infection.  相似文献   
128.
Lateral gene transfer (LGT) is an important mechanism of natural variation among prokaryotes. Over the full course of evolution, most or all of the genes resident in a given prokaryotic genome have been affected by LGT, yet the frequency of LGT can vary greatly across genes and across prokaryotic groups. The proteobacteria are among the most diverse of prokaryotic taxa. The prevalence of LGT in their genome evolution calls for the application of network-based methods instead of tree-based methods to investigate the relationships among these species. Here, we report networks that capture both vertical and horizontal components of evolutionary history among 1,207,272 proteins distributed across 329 sequenced proteobacterial genomes. The network of shared proteins reveals modularity structure that does not correspond to current classification schemes. On the basis of shared protein-coding genes, the five classes of proteobacteria fall into two main modules, one including the alpha-, delta-, and epsilonproteobacteria and the other including beta- and gammaproteobacteria. The first module is stable over different protein identity thresholds. The second shows more plasticity with regard to the sequence conservation of proteins sampled, with the gammaproteobacteria showing the most chameleon-like evolutionary characteristics within the present sample. Using a minimal lateral network approach, we compared LGT rates at different phylogenetic depths. In general, gene evolution by LGT within proteobacteria is very common. At least one LGT event was inferred to have occurred in at least 75% of the protein families. The average LGT rate at the species and class depth is about one LGT event per protein family, the rate doubling at the phylum level to an average of two LGT events per protein family. Hence, our results indicate that the rate of gene acquisition per protein family is similar at the level of species (by recombination) and at the level of classes (by LGT). The frequency of LGT per genome strongly depends on the species lifestyle, with endosymbionts showing far lower LGT frequencies than free-living species. Moreover, the nature of the transferred genes suggests that gene transfer in proteobacteria is frequently mediated by conjugation.  相似文献   
129.
130.
Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号