首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   434篇
  免费   28篇
  462篇
  2024年   1篇
  2023年   1篇
  2022年   2篇
  2021年   8篇
  2020年   4篇
  2019年   7篇
  2018年   1篇
  2017年   4篇
  2016年   16篇
  2015年   27篇
  2014年   21篇
  2013年   15篇
  2012年   21篇
  2011年   36篇
  2010年   22篇
  2009年   9篇
  2008年   44篇
  2007年   29篇
  2006年   41篇
  2005年   35篇
  2004年   23篇
  2003年   30篇
  2002年   23篇
  2001年   9篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1978年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1972年   2篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
排序方式: 共有462条查询结果,搜索用时 15 毫秒
61.
With big data becoming widely available in healthcare, machine learning algorithms such as random forest (RF) that ignores time-to-event information and random survival forest (RSF) that handles right-censored data are used for individual risk prediction alternatively to the Cox proportional hazards (Cox-PH) model. We aimed to systematically compare RF and RSF with Cox-PH. RSF with three split criteria [log-rank (RSF-LR), log-rank score (RSF-LRS), maximally selected rank statistics (RSF-MSR)]; RF, Cox-PH, and Cox-PH with splines (Cox-S) were evaluated through a simulation study based on real data. One hundred eighty scenarios were investigated assuming different associations between the predictors and the outcome (linear/linear and interactions/nonlinear/nonlinear and interactions), training sample sizes (500/1000/5000), censoring rates (50%/75%/93%), hazard functions (increasing/decreasing/constant), and number of predictors (seven, 15 including noise variables). Methods' performance was evaluated with time-dependent area under curve and integrated Brier score. In all scenarios, RF had the worst performance. In scenarios with a low number of events (⩽70), Cox-PH was at least noninferior to RSF, whereas under linearity assumption it outperformed RSF. Under the presence of interactions, RSF performed better than Cox-PH as the number of events increased whereas Cox-S reached at least similar performance with RSF under nonlinear effects. RSF-LRS performed slightly worse than RSF-LR and RSF-MSR when including noise variables and interaction effects. When applied to real data, models incorporating survival time performed better. Although RSF algorithms are a promising alternative to conventional Cox-PH as data complexity increases, they require a higher number of events for training. In time-to-event analysis, algorithms that consider survival time should be used.  相似文献   
62.
Accurate chromosome segregation during mitosis and meiosis is crucial for cellular and organismal viability. Kinetochores connect chromosomes with spindle microtubules and are essential for chromosome segregation. These large protein scaffolds emerge from the centromere, a specialized region of the chromosome enriched with the histone H3 variant CENP-A. In most eukaryotes, the kinetochore core consists of the centromere-proximal constitutive centromere-associated network (CCAN), which binds CENP-A and contains 16 subunits, and of the centromere-distal Knl1 complex, Mis12 complex, Ndc80 complex (KMN) network, which binds microtubules and contains 10 subunits. In the fruitfly, Drosophila melanogaster, the kinetochore underwent remarkable simplifications. All CCAN subunits, with the exception of centromeric protein C (CENP-C), and two KMN subunits, Dsn1 and Zwint, cannot be identified in this organism. In addition, two paralogues of the KMN subunit Nnf1 (Nnf1a and Nnf1b) are present. Finally, the Spc105R subunit, homologous to human Knl1/CASC5, underwent considerable sequence changes in comparison with other organisms. We combined biochemical reconstitution with biophysical and structural methods to investigate how these changes reflect on the organization of the Drosophila KMN network. We demonstrate that the Nnf1a and Nnf1b paralogues are subunits of distinct complexes, both of which interact directly with Spc105R and with CENP-C, for the latter of which we identify a binding site on the Mis12 subunit. Our studies shed light on the structural and functional organization of a highly divergent kinetochore particle.  相似文献   
63.
How the brain uses success and failure to optimize future decisions is a long-standing question in neuroscience. One computational solution involves updating the values of context-action associations in proportion to a reward prediction error. Previous evidence suggests that such computations are expressed in the striatum and, as they are cognitively impenetrable, represent an unconscious learning mechanism. Here, we formally test this by studying instrumental conditioning in a situation where we masked contextual cues, such that they were not consciously perceived. Behavioral data showed that subjects nonetheless developed a significant propensity to choose cues associated with monetary rewards relative to punishments. Functional neuroimaging revealed that during conditioning cue values and prediction errors, generated from a computational model, both correlated with activity in ventral striatum. We conclude that, even without conscious processing of contextual cues, our brain can learn their reward value and use them to provide a bias on decision making.  相似文献   
64.
Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.  相似文献   
65.
Subplate zone (SP) is prominent, transient laminar compartment of the human fetal cerebral wall. The SP develops around 13 and gradually disappears after 32-34 postovulatory weeks. The SP neurons can be found as late as nine postnatal months, while remnants of the SP neurons can be traced until adult age in the form of interstitial neurons of the gyral white matter. SP is composed of postmigratory and migratory neurons, growth cones, loosely arranged axons, dendrites, glial cell and synapses. The remarkable feature of the SP is the presence of large amount of extracellular matrix. This feature can be used for delineation of SP in magnetic resonance images (MRI) of both, in vivo and post mortem brains. The importance of SP as the main synaptic zone of the human fetal cortex is based on the rich input of ,waiting,< afferents from thalamus and cortex, during the crucial phase of cortical target area selection. SP increases during mammalian evolution and culminates in human brain concomitantly with increase in number and diversity of cortico-cortical fibers. The recent neurobiological evidence shows that SP is important site of spontaneous endogeneous activity, building a framework for development of cortical columnar organization. The SP which can be readily visualized on conventional and DTI (diffusion-tensor-imaging) MRI in vivo, today is in the focus of interest of pediatric neurology due to the following facts: (1) SP is the site of early neural activity, (2) SP is the major substrate for functional plasticity, and (3) selective vulnerability of SP may lead to cognitive impairment.  相似文献   
66.
Haloarchaeal diversity in the crystallizers of Adriatic Secovlje salterns was investigated using gene fragments encoding 16S rRNA and bacteriorhodopsin as molecular markers. Screening of 180 clones from five gene libraries constructed for each gene targeted revealed 15 different 16S rRNA and 10 different bacteriorhodopsin phylotypes, indicating higher haloarchaeal diversity than previously reported in such hypersaline environments. Furthermore, results of rarefaction analysis indicated that analysis of an increasing number of clones would have revealed additional diversity. Finally, most sequences from the crystallizers grouped within the Halorubrum branch, whereas square-shaped 'Haloquadratum' relatives, repeatedly reported to dominate crystallizer communities, were rare. Presence of such special and diverse haloarchaeal community could be attributed to the Secovlje salterns rare continuous short-cycling salt production mechanism.  相似文献   
67.
The objective of this study was to determine the orientation and magnitude of maximal displacement forces (DFs) in the thoracic aortic aneurysm endograft (TAA endograft) in three-dimensional (3D) space. Theoretical computer model representing the anatomically worst-case scenario with respect to DF magnitude was used to calculate the magnitude and orientation of maximal DF. A patient-specific anatomical computer model of typically seen, average size anatomy was used to analyse the progression of DF throughout the cardiac cycle. Maximal DFs were 35.01 and 37.32 N in standing and supine position, respectively, in 46-mm diameter TAA graft with 90° bend. A patient-specific model shows that a maximal DF magnitude is achieved at the peak systolic flow. In both models, the orientation of the DF vector was perpendicular to the greater curvature of the aorta, with upward (cranial) and sideways components. The effect of shearing force on the total DF that acts on the TAA endograft was found negligible due to the several orders of magnitude stronger contribution of pressure forces to the total DF relative to the wall shear stress contribution, resulting in aortic diameters and angulation being the main drivers of DF. It was discovered that the TAA endografts can be subjected to much stronger DF than previously suspected. The magnitude of maximal DF in thoracic aorta in the worst-case scenario could be as high as 35.01 N (standing) and 37.32 N (supine). This new information should be used in the process of designing new generations of TAA endografts with better migration resistance properties.  相似文献   
68.
The generation of bispecific antibodies (bsAbs) targeting two different antigens opens a new level of specificity and, compared to mAbs, improved clinical efficacy in cancer therapy. Currently, the different strategies for development of bsAbs primarily focus on IgG isotypes. Nevertheless, in comparison to IgG isotypes, IgE has been shown to offer superior tumor control in preclinical models. Therefore, in order to combine the promising potential of IgE molecules with increased target selectivity of bsAbs, we developed dual tumor-associated antigen-targeting bispecific human IgE antibodies. As proof of principle, we used two different pairing approaches - knobs-into-holes and leucine zipper–mediated pairing. Our data show that both strategies were highly efficient in driving bispecific IgE formation, with no undesired pairings observed. Bispecific IgE antibodies also showed a dose-dependent binding to their target antigens, and cell bridging experiments demonstrated simultaneous binding of two different antigens. As antibodies mediate a major part of their effector functions through interaction with Fc receptors (FcRs) expressed on immune cells, we confirmed FcεR binding by inducing in vitro mast cell degranulation and demonstrating in vitro and in vivo monocyte-mediated cytotoxicity against target antigen-expressing Chinese hamster ovary cells. Moreover, we demonstrated that the IgE bsAb construct was significantly more efficient in mediating antibody-dependent cell toxicity than its IgG1 counterpart. In conclusion, we describe the successful development of first bispecific IgE antibodies with superior antibody-dependent cell toxicity–mediated cell killing in comparison to IgG bispecific antibodies. These findings highlight the relevance of IgE-based bispecific antibodies for clinical application.  相似文献   
69.
70.
The basolateral Cl(-)/HCO(3)(-) exchanger in parietal cells plays an essential role in gastric acid secretion mediated via the apical gastric H(+)-K(+)-ATPase. Here, we report the identification of a new Cl(-)/HCO(3)(-) exchanger, which shows exclusive expression in mouse stomach and kidney, with expression in the stomach limited to the basolateral membrane of gastric parietal cells. Tissue distribution studies by RT-PCR and Northern hybridizations demonstrated the exclusive expression of this transporter, also known as SLC26A7, to stomach and kidney, with the stomach expression significantly more abundant. No expression was detected in the intestine. Cellular distribution studies by RT-PCR and Northern hybridizations demonstrated predominant localization of SLC26A7 in gastric parietal cells. Immunofluorescence labeling localized this exchanger exclusively to the basolateral membrane of gastric parietal cells, and functional studies in oocytes indicated that SLC26A7 is a DIDS-sensitive Cl(-)/HCO(3)(-) exchanger that is active in both acidic and alkaline pH(i). On the basis of its unique expression pattern and function, we propose that SLC26A7 is a basolateral Cl(-)/HCO(3)(-) exchanger in gastric parietal cells and plays a major role in gastric acid secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号