全文获取类型
收费全文 | 3946篇 |
免费 | 283篇 |
国内免费 | 1篇 |
专业分类
4230篇 |
出版年
2023年 | 10篇 |
2022年 | 34篇 |
2021年 | 65篇 |
2020年 | 38篇 |
2019年 | 50篇 |
2018年 | 82篇 |
2017年 | 59篇 |
2016年 | 120篇 |
2015年 | 209篇 |
2014年 | 216篇 |
2013年 | 283篇 |
2012年 | 374篇 |
2011年 | 367篇 |
2010年 | 186篇 |
2009年 | 164篇 |
2008年 | 262篇 |
2007年 | 267篇 |
2006年 | 223篇 |
2005年 | 235篇 |
2004年 | 201篇 |
2003年 | 181篇 |
2002年 | 180篇 |
2001年 | 33篇 |
2000年 | 23篇 |
1999年 | 39篇 |
1998年 | 39篇 |
1997年 | 45篇 |
1996年 | 37篇 |
1995年 | 24篇 |
1994年 | 25篇 |
1993年 | 17篇 |
1992年 | 19篇 |
1991年 | 16篇 |
1990年 | 14篇 |
1989年 | 11篇 |
1988年 | 12篇 |
1987年 | 10篇 |
1986年 | 17篇 |
1985年 | 7篇 |
1984年 | 9篇 |
1983年 | 7篇 |
1982年 | 4篇 |
1981年 | 4篇 |
1980年 | 2篇 |
1978年 | 4篇 |
1976年 | 1篇 |
1968年 | 1篇 |
1967年 | 1篇 |
1966年 | 1篇 |
1965年 | 1篇 |
排序方式: 共有4230条查询结果,搜索用时 15 毫秒
991.
Volná P Jarjour J Baxter S Roffler SR Monnat RJ Stoddard BL Scharenberg AM 《Nucleic acids research》2007,35(8):2748-2758
LAGLIDADG homing endonucleases (LHEs) cleave 18–24bp DNA sequences and are promising enzymes for applications requiring sequence-specific DNA cleavage amongst genome-sized DNA backgrounds. Here, we report a method for cell surface display of LHEs, which facilitates analysis of their DNA binding and cleavage properties by flow cytometry. Cells expressing surface LHEs can be stained with fluorescently conjugated double-stranded oligonucleotides (dsOligos) containing their respective target sequences. The signal is absolutely sequence specific and undetectable with dsOligos carrying single base-pair substitutions. LHE–dsOligo interactions facilitate rapid enrichment and viable recovery of rare LHE expressing cells by both fluorescence-activated cell sorting (FACS) and magnetic cell sorting (MACS). Additionally, dsOligos conjugated with unique fluorophores at opposite termini can be tethered to the cell surface and used to detect DNA cleavage. Recapitulation of DNA binding and cleavage by surface-displayed LHEs provides a high-throughput approach to library screening that should facilitate rapid identification and analysis of enzymes with novel sequence specificities. 相似文献
992.
White J Lukacik P Esser D Steward M Giddings N Bright JR Fritchley SJ Morgan BP Lea SM Smith GP Smith RA 《Protein science : a publication of the Protein Society》2004,13(9):2406-2415
Decay-accelerating factor (DAF, CD55) is a glycophosphatidyl inositol-anchored glycoprotein that regulates the activity of C3 and C5 convertases. In addition to understanding the mechanism of complement inhibition by DAF through structural studies, there is also an interest in the possible therapeutic potential of the molecule. In this report we describe the cloning, expression in Escherichia coli, isolation and membrane-targeting modification of the four short consensus repeat domains of soluble human DAF with an additional C-terminal cysteine residue to permit site-specific modification. The purified refolded recombinant protein was active against both classical and alternative pathway assays of complement activation and had similar biological activity to soluble human DAF expressed in Pichia pastoris. Modification with a membrane-localizing peptide restored cell binding and gave a large increase in antihemolytic potency. These data suggested that the recombinant DAF was correctly folded and suitable for structural studies as well as being the basis for a DAF-derived therapeutic. Crystals of the E. coli-derived protein were obtained and diffracted to 2.2 A, thus permitting the first detailed X-ray crystallography studies on a functionally active human complement regulator protein with direct therapeutic potential. 相似文献
993.
Photosynthetic electron transport and specific photoprotective responses in wheat leaves under drought stress 总被引:1,自引:0,他引:1
Marek Zivcak Marian Brestic Zuzana Balatova Petra Drevenakova Katarina Olsovska Hazem M. Kalaji Xinghong Yang Suleyman I. Allakhverdiev 《Photosynthesis research》2013,117(1-3):529-546
The photosynthetic responses of wheat (Triticum aestivum L.) leaves to different levels of drought stress were analyzed in potted plants cultivated in growth chamber under moderate light. Low-to-medium drought stress was induced by limiting irrigation, maintaining 20 % of soil water holding capacity for 14 days followed by 3 days without water supply to induce severe stress. Measurements of CO2 exchange and photosystem II (PSII) yield (by chlorophyll fluorescence) were followed by simultaneous measurements of yield of PSI (by P700 absorbance changes) and that of PSII. Drought stress gradually decreased PSII electron transport, but the capacity for nonphotochemical quenching increased more slowly until there was a large decrease in leaf relative water content (where the photosynthetic rate had decreased by half or more). We identified a substantial part of PSII electron transport, which was not used by carbon assimilation or by photorespiration, which clearly indicates activities of alternative electron sinks. Decreasing the fraction of light absorbed by PSII and increasing the fraction absorbed by PSI with increasing drought stress (rather than assuming equal absorption by the two photosystems) support a proposed function of PSI cyclic electron flow to generate a proton-motive force to activate nonphotochemical dissipation of energy, and it is consistent with the observed accumulation of oxidized P700 which causes a decrease in PSI electron acceptors. Our results support the roles of alternative electron sinks (either from PSII or PSI) and cyclic electron flow in photoprotection of PSII and PSI in drought stress conditions. In future studies on plant stress, analyses of the partitioning of absorbed energy between photosystems are needed for interpreting flux through linear electron flow, PSI cyclic electron flow, along with alternative electron sinks. 相似文献
994.
Differential regulation of nramp and irt metal transporter genes in wild type and iron uptake mutants of tomato 总被引:14,自引:0,他引:14
Bereczky Z Wang HY Schubert V Ganal M Bauer P 《The Journal of biological chemistry》2003,278(27):24697-24704
Metal transporters regulated by iron can transport a variety of divalent metals, suggesting that iron regulation is important for specificity of iron transport. In plants, the iron-regulated broad-range metal transporter IRT1 is required for uptake of iron into the root epidermis. Functions of other iron-regulated plant metal transporters are not yet established. To deduce novel plant iron transport functions we studied the regulation of four tomato metal transporter genes belonging to the nramp and irt families with respect to environmental and genetic factors influencing iron uptake. We isolated Lenramp1 and Lenramp3 from tomato and demonstrate that these genes encode functional NRAMP metal transporters in yeast, where they were iron-regulated and localized mainly to intracellular vesicles. Lenramp1 and Leirt1 revealed both root-specific expression and up-regulation by iron deficiency, respectively, in contrast to Leirt2 and Lenramp3. Lenramp1 and Leirt1, but not Lenramp3 and Leirt2, were down-regulated in the roots of fer mutant plants deficient in a bHLH gene regulating iron uptake. In chloronerva mutant plants lacking the functional enzyme for synthesis of the plant-specific metal chelator nicotianamine Leirt1 and Lenramp1 were up-regulated despite sufficient iron supply independent of a functional fer gene. Lenramp1 was expressed in the vascular root parenchyma in a similar cellular pattern as the fer gene. However, the fer gene was not sufficient for inducing Lenramp1 and Leirt1 when ectopically expressed. Based on our results, we suggest a novel function for NRAMP1 in mobilizing iron in the vascular parenchyma upon iron deficiency in plants. We discuss fer/nicotianamine synthase-dependent and -independent regulatory pathways for metal transporter gene regulation. 相似文献
995.
Schirmbeck R Riedl P Zurbriggen R Akira S Reimann J 《Journal of immunology (Baltimore, Md. : 1950)》2003,171(10):5198-5207
A priority in current vaccine research is the development of adjuvants that support the efficient priming of long-lasting, CD4(+) T cell help-independent CD8(+) T cell immunity. Oligodeoxynucleotides (ODN) with immune-stimulating sequences (ISS) containing CpG motifs facilitate the priming of MHC class I-restricted CD8(+) T cell responses to proteins or peptides. We show that the adjuvant effect of ISS(+) ODN on CD8(+) T cell priming to large, recombinant Ag is enhanced by binding them to short, cationic (arginine-rich) peptides that themselves have no adjuvant activity in CD8(+) T cell priming. Fusing antigenic epitopes to cationic (8- to 10-mer) peptides bound to immune-stimulating ISS(+) ODN or nonstimulating NSS(+) ODN (without CpG-containing sequences) generated immunogens that efficiently primed long-lasting, specific CD8(+) T cell immunity of high magnitude. Different MHC class I-binding epitopes fused to short cationic peptides of different origins showed this adjuvant activity. Quantitative ODN binding to cationic peptides strikingly reduced the toxicity of the latter, suggesting that it improves the safety profile of the adjuvant. CD8(+) T cell priming supported by this adjuvant was Toll-like receptor 9 dependent, but required no CD4(+) T cell help. ODN (with or without CpG-containing sequences) are thus potent Th1-promoting adjuvants when bound to cationic peptides covalently linked to antigenic epitopes, a mode of Ag delivery prevailing in many viral nucleocapsids. 相似文献
996.
Schratl P Royer JF Kostenis E Ulven T Sturm EM Waldhoer M Hoefler G Schuligoi R Lippe IT Peskar BA Heinemann A 《Journal of immunology (Baltimore, Md. : 1950)》2007,179(7):4792-4799
Prostaglandin (PG) D2 is a major mast cell product that acts via two receptors, the D-type prostanoid (DP) and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) receptors. Whereas CRTH2 mediates the chemotaxis of eosinophils, basophils, and Th2 lymphocytes, the role of DP has remained unclear. We report in this study that, in addition to CRTH2, the DP receptor plays an important role in eosinophil trafficking. First, we investigated the release of eosinophils from bone marrow using the in situ perfused guinea pig hind limb preparation. PGD2 induced the rapid release of eosinophils from bone marrow and this effect was inhibited by either the DP receptor antagonist BWA868c or the CRTH2 receptor antagonist ramatroban. In contrast, BWA868c did not inhibit the release of bone marrow eosinophils when this was induced by the CRTH2-selective agonist 13,14-dihydro-15-keto-PGD2. In additional experiments, we isolated bone marrow eosinophils from the femoral cavity and found that these cells migrated toward PGD2. We also observed that BWA868c inhibited this response to a similar extent as ramatroban. Finally, using immunohistochemistry we could demonstrate that eosinophils in human bone marrow specimens expressed DP and CRTH2 receptors at similar levels. Eosinophils isolated from human peripheral blood likewise expressed DP receptor protein but at lower levels than CRTH2. In agreement with this, the chemotaxis of human peripheral blood eosinophils was inhibited both by BWA868c and ramatroban. These findings suggest that DP receptors comediate with CRTH2 the mobilization of eosinophils from bone marrow and their chemotaxis, which might provide the rationale for DP antagonists in the treatment of allergic disease. 相似文献
997.
Thierry Rolling Iris Koerner Petra Zimmermann Kristian Holz Otto Haller Peter Staeheli Georg Kochs 《Journal of virology》2009,83(13):6673-6680
High virulence of influenza virus A/Puerto Rico/8/34 in mice carrying the Mx1 resistance gene was recently shown to be determined by the viral surface proteins and the viral polymerase. Here, we demonstrated high-level polymerase activity in mammalian host cells but not avian host cells and investigated which mutations in the polymerase subunits PB1, PB2, and PA are critical for increased polymerase activity and high virus virulence. Mutational analyses demonstrated that an isoleucine-to-valine change at position 504 in PB2 was the most critical and strongly enhanced the activity of the reconstituted polymerase complex. An isoleucine-to-leucine change at position 550 in PA further contributed to increased polymerase activity and high virulence, whereas all other mutations in PB1, PB2, and PA were irrelevant. To determine whether this pattern of acquired mutations represents a preferred viral strategy to gain virulence, two independent new virus adaptation experiments were performed. Surprisingly, the conservative I504V change in PB2 evolved again and was the only mutation present in an aggressive virus variant selected during the first adaptation experiment. In contrast, the virulent virus selected in the second adaptation experiment had a lysine-to-arginine change at position 208 in PB1 and a glutamate-to-glycine change at position 349 in PA. These results demonstrate that a variety of minor amino acid changes in the viral polymerase can contribute to enhanced virulence of influenza A virus. Interestingly, all virulence-enhancing mutations that we identified in this study resulted in substantially increased viral polymerase activity.Influenza virus infections continue to represent a major public health threat. Epidemics caused by influenza A viruses (FLUAV) occur regularly, often leading to excess mortality in susceptible populations, and may result in devastating pandemics for humans (37). An avian FLUAV originating from Asia and currently circulating among domestic birds in many countries has the potential to infect and kill people. If further adaptation to humans occurs, this virus strain might become the origin of a future pandemic (57). Although influenza viruses are well characterized, the molecular determinants governing cross-species adaptation and enhanced virulence of emerging virus strains in humans are presently not well understood. The known viral virulence factors are the envelope glycoproteins hemagglutinin (HA) and neuraminidase (NA), the nonstructural proteins NS1 and PB1-F2, and the polymerase complex. HA and NA are of key importance for host specificity and virulence because they determine specific receptor usage and efficient cell entry, as well as formation and release of progeny virus particles. NS1 is a multifunctional protein with interferon-antagonistic activity able to suppress host innate immune responses (11, 15). The small proapoptotic protein PB1-F2 induces more-severe pulmonary immunopathology and increases susceptibility to secondary bacterial pneumonia (3, 30). Recent evidence indicates that the polymerase complex consisting of the three subunits PA, PB1, and PB2 is also a determinant of virulence. Analyses of the 1918 pandemic virus showed that PB1 contributed to the high virulence of this deadly strain (38, 54, 56). Likewise, PB1 also contributed to the unusually high virulence of the pandemic viruses of 1957 and 1968 (23, 47). Interestingly, in recent avian-to-human transmissions of H5N1 and H7N7 viruses, the PB2 subunit was found to play a critical role (32, 40). Molecular studies revealed that an E-to-K exchange at position 627 of PB2 facilitates efficient replication of avian viruses in human cells (24, 33) and determines pathogenicity in mammals (18, 32, 51). Furthermore, recent analyses of highly pathogenic H5N1 viruses demonstrated that PA is involved in high virulence of these avian strains for both avian and mammalian hosts (21, 27).Moderately pathogenic FLUAV strains can be rendered more pathogenic by repeated passages in experimentally infected animals (2, 13, 16, 49, 55). During such adaptations, the evolving viruses frequently seem to acquire virulence-enhancing mutations in the polymerase genes. We recently characterized a virus pair with strikingly different virulences in mice and showed that the virulence-enhancing mutations of the highly virulent strain mapped to the HA, NA, and polymerase genes (13). The two A/Puerto Rico/8/34 (A/PR/8/34) strains are referred to here as high-virulence A/PR/8/34 (hvPR8) and low-virulence A/PR/8/34 (lvPR8). Interestingly, hvPR8 is also highly virulent in mice that carry functional alleles of the Mx1 resistance gene (17), most likely because it replicates rapidly enough to evade the innate immune response of naïve hosts (13).Here, we systematically analyzed which mutations in the three viral polymerase genes contribute to enhanced virulence of hvPR8. We found that two conservative mutations, one in PB2 (I504V) and one in PA (I550L), account for the high-virulence phenotype and that each single mutation considerably increases the activity of the reconstituted polymerase complex. Interestingly, in a new mouse adaptation experiment, the same I504V mutation in PB2 was acquired again by a highly virulent isolate as the only change in the polymerase complex. In contrast, another virulent, mouse-adapted isolate acquired two different mutations in PA and PB1. In this case, the change in PA had a greater impact on both enhanced polymerase activity and enhanced virulence than the mutation in PB1. These data demonstrate that increased polymerase activity contributes to high virus virulence and that human FLUAV have a range of options to achieve this goal.(This work was conducted by Thierry Rolling, Iris Koerner, and Petra Zimmermann in partial fulfillment of the requirements for an M.D. degree from the Medical Faculty [T.R.] or a Ph.D. degree from the Faculty of Biology [I.K. and P.Z.] of the University of Freiburg, Germany.) 相似文献
998.
An evaluation of field and noninvasive genetic methods for estimating Eurasian otter population size
Petra Hájková Barbora Zemanová Kevin Roche Bedřich Hájek 《Conservation Genetics》2009,10(6):1667-1681
Successful conservation and management of rare and elusive species requires reliable estimates of population size, but acquisition
of such data is often challenging. We compare the two most frequently used methods of assessing abundance of Eurasian otter
(Lutra lutra) populations, noninvasive genetic sampling (NGS) based on genotyping of faeces and field surveys using snow tracking. In
a 100-km2 oligotrophic otter habitat with linear water bodies, both methods yielded very similar estimates (10–12 individuals). However,
in a 100-km2 fishpond area, consisting of a complex network of rivers, fishponds, channels and marshes, genotyping of faeces revealed
the presence of a higher number of individuals (46–50 genotypes) than the snow survey (38 individuals). NGS data analysed
by capture-mark-recapture (CMR)-based software CAPWIRE provided even higher estimates, being twice the number assessed through
snow tracking (76–81 individuals, CI95% = 49–96 and 55–89). Our results suggest that the performance of both NGS and snow tracking is comparable in simple linear
habitats, but in complex habitats with very high otter density a combination of genetic and field methods, or CMR analysis
using genetic data, is recommended. We emphasise that to obtain reliable estimates using NGS it is necessary to follow strict
protocols for detection and elimination of genotyping errors. Based on a literature review and our experience, we suggest
improvements that may increase the success rate and efficiency of NGS for otters. 相似文献
999.
The division inhibitor EzrA contains a seven-residue patch required for maintaining the dynamic nature of the medial FtsZ ring 下载免费PDF全文
The essential cytoskeletal protein FtsZ assembles into a ring-like structure at the nascent division site and serves as a scaffold for the assembly of the prokaryotic division machinery. We previously characterized EzrA as an inhibitor of FtsZ assembly in Bacillus subtilis. EzrA interacts directly with FtsZ to prevent aberrant FtsZ assembly and cytokinesis at cell poles. EzrA also concentrates at the cytokinetic ring in an FtsZ-dependent manner, although its precise role at this position is not known. Here, we identified a conserved patch of amino acids in the EzrA C terminus that is essential for localization to the FtsZ ring. Mutations in this patch (designated the “QNR patch”) abolish EzrA localization to midcell but do not significantly affect EzrA's ability to inhibit FtsZ assembly at cell poles. ezrA QNR patch mutant cells exhibit stabilized FtsZ assembly at midcell and are significantly longer than wild-type cells, despite lacking extra FtsZ rings. These results indicate that EzrA has two distinct activities in vivo: (i) preventing aberrant FtsZ ring formation at cell poles through inhibition of de novo FtsZ assembly and (ii) maintaining proper FtsZ assembly dynamics within the medial FtsZ ring, thereby rendering it sensitive to the factors responsible for coordinating cell growth and cell division. 相似文献
1000.
Ammodytoxins are neurotoxic secretory phospholipase A(2) molecules, some of the most toxic components of the long-nosed viper (Vipera ammodytes ammodytes) venom. Envenomation by this and by closely related vipers is quite frequent in southern parts of Europe and serotherapy is used in the most severe cases. Because of occasional complications, alternative medical treatment of envenomation is needed. In the present study, ammodytoxin inhibitor was purified from the serum of V. a. ammodytes using two affinity procedures and a gel exclusion chromatography step. The ammodytoxin inhibitor from V. a. ammodytes serum consists of 23- and 25-kDa glycoproteins that form an oligomer, probably a tetramer, of about 100 kDa. N-terminal sequencing and immunological analysis revealed that both types of subunit are very similar to gamma-type secretory phospholipase A(2) inhibitors. The ammodytoxin inhibitor from V. a. ammodytes serum is a potent inhibitor of phospholipase activity and hence probably also the neurotoxicity of ammodytoxins. Discovery of the novel natural inhibitor of these potent secretory phospholipase A(2) toxins opens up prospects for the development of new types of small peptide inhibitors for use in regulating the physiological and pathological activities of secretory phospholipases A(2). 相似文献