首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4081篇
  免费   311篇
  国内免费   1篇
  2023年   8篇
  2022年   29篇
  2021年   70篇
  2020年   39篇
  2019年   54篇
  2018年   87篇
  2017年   61篇
  2016年   125篇
  2015年   212篇
  2014年   223篇
  2013年   288篇
  2012年   380篇
  2011年   372篇
  2010年   190篇
  2009年   166篇
  2008年   276篇
  2007年   277篇
  2006年   232篇
  2005年   249篇
  2004年   208篇
  2003年   186篇
  2002年   185篇
  2001年   37篇
  2000年   26篇
  1999年   43篇
  1998年   42篇
  1997年   47篇
  1996年   38篇
  1995年   25篇
  1994年   25篇
  1993年   17篇
  1992年   20篇
  1991年   17篇
  1990年   15篇
  1989年   15篇
  1988年   15篇
  1987年   11篇
  1986年   19篇
  1985年   8篇
  1984年   12篇
  1983年   11篇
  1982年   5篇
  1981年   6篇
  1980年   3篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1970年   2篇
  1947年   1篇
  1920年   2篇
排序方式: 共有4393条查询结果,搜索用时 406 毫秒
991.
Targeted migration of muscle precursor cells to the anlagen of limb muscles is a complex process, which is only partially understood. We have used Lbx1 mutant mice, which are unable to establish correct migration paths of muscle precursor cells into the limbs to identify new genes involved in the accurate placement of myogenic cells in developing muscles. We found that mKlhdc2 (Kelch domain containing-2), a novel member of the family of Kelch domain containing proteins, is significantly downregulated in Lbx1 homozygous mutant embryos. Functional characterization of mKlhdc2 by targeted overexpression in 10T1/2 fibroblasts and C2C12 muscle cells rendered these cells unable to respond to chemoattractants such as HGF. Furthermore, C2C12 myoblasts overexpressing mKlhdc2 display altered cellular morphology and are unable to differentiate into mature myotubes. Our results suggest that a tightly controlled expression of mKlhdc2 is essential for a faithful execution of the myogenic differentiation and migration program.  相似文献   
992.
993.
Soluble MHC-peptide (pMHC) complexes induce intracellular calcium mobilization, diverse phosphorylation events, and death of CD8+ CTL, given that they are at least dimeric and co-engage CD8. By testing dimeric, tetrameric, and octameric pMHC complexes containing spacers of different lengths, we show that their ability to activate CTL decreases as the distance between their subunit MHC complexes increases. Remarkably, pMHC complexes containing long rigid polyproline spacers (> or =80 A) inhibit target cell killing by cloned S14 CTL in a dose- and valence-dependent manner. Long octameric pMHC complexes abolished target cell lysis, even very strong lysis, at nanomolar concentrations. By contrast, an altered peptide ligand antagonist was only weakly inhibitory and only at high concentrations. Long D(b)-gp33 complexes strongly and specifically inhibited the D(b)-restricted lymphocytic choriomeningitis virus CTL response in vitro and in vivo. We show that complications related to transfer of peptide from soluble to cell-associated MHC molecules can be circumvented by using covalent pMHC complexes. Long pMHC complexes efficiently inhibited CTL target cell conjugate formation by interfering with TCR-mediated activation of LFA-1. Such reagents provide a new and powerful means to inhibit Ag-specific CTL responses and hence should be useful to blunt autoimmune disorders such as diabetes type I.  相似文献   
994.
In HLA-A2 individuals, the CD8 T cell response against the differentiation Ag Melan-A is mainly directed toward the peptide Melan-A26-35. The murine Melan-A24-33 sequence encodes a peptide that is identical with the human Melan-A26-35 decamer, except for a Thr-to-Ile substitution at the penultimate position. Here, we show that the murine Melan-A24-33 is naturally processed and presented by HLA-A2 molecules. Based on these findings, we compared the CD8 T cell response to human and murine Melan-A peptide by immunizing HLA-A2 transgenic mice. Even though the magnitude of the CTL response elicited by the murine Melan-A peptide was lower than the one elicited by the human Melan-A peptide, both populations of CTL recognized the corresponding immunizing peptide with the same functional avidity. Interestingly, CTL specific for the murine Melan-A peptide were completely cross-reactive against the orthologous human peptide, whereas anti-human Melan-A CTL recognized the murine Melan-A peptide with lower avidity. Structurally, this discrepancy could be explained by the fact that Ile32 of murine Melan-A24-33 created a larger TCR contact area than Thr34 of human Melan-A26-35. These data indicate that, even if immunizations with orthologous peptides can induce strong specific T cell responses, the quality of this response against syngeneic targets might be suboptimal due to the structure of the peptide-TCR contact surface.  相似文献   
995.
Allergic asthma is one of the most prevalent and continuously increasing diseases in developed countries. Its clinical features include airway hyperresponsiveness and inflammation upon allergen contact. Furthermore, an emerging area of research subsumed as fetal programming evaluates the impact of environmental insults in utero on the incidence of diseases in later life. The aim of this study was to identify whether prenatal exposure to stress, which constitutes a severe environmental insult, perpetuates airway inflammation in later life. Our experiments were performed in mice and revealed that prenatally stressed adult offspring indeed show an increased vulnerability toward airway hyperresponsiveness and inflammation. Furthermore, we provide persuasive insights on dysregulated pathways of the cellular and humoral immune response upon Ag challenge in prenatally stressed adult offspring, reflected by a Th2 greater Th1 adaptive immune response and increased CCR3 and IgE levels in vivo. Additionally, APCs derived from prenatally stressed offspring trigger clonal expansion of Th2 cells in vitro. We also deliver experimental evidence for a reduced corticotrophin-releasing hormone expression in the paraventricular nucleus of adult offspring in response to prenatal stress. Furthermore, behavioral analyses indicate an increase in anxiety in these mice. In conclusion, our data will facilitate future research aiming to identify the individual impact, hierarchy, and redundancy of multiple key protagonists in airway inflammation in an interdisciplinary context. This will foster the substantiation of disease-prevention strategies, such as asthma, during the prenatal period.  相似文献   
996.
Ammodytoxin A (AtxA) from the venom of Vipera ammodytes ammodytes belongs to group IIA secreted phospholipase A2 (sPLA2), for which the major pathologic activity is presynaptic neurotoxicity. We show here that this toxin also affects hemostasis because it exhibits strong anticoagulant activity. AtxA binds directly to human coagulation factor Xa (FXa) with Kdapp of 32 nM, thus inhibiting the activity of the prothrombinase complex with an IC50 of 20 nM. To map the FXa-interaction site on AtxA, various mutants of AtxA produced by site-directed mutagenesis and expressed in Escherichia coli were tested in the study. In surface plasmon resonance (SPR) measurements, with FXa covalently attached to the sensor chip, we show that the FXa-binding site on AtxA includes several basic amino acid residues at the C-terminal and beta-wing regions of the molecule. Applying an in vitro biological test for inhibition of prothrombinase activity, we further demonstrate that the same residues are also very important for the anticoagulant activity of AtxA. We conclude that the anticoagulant site of AtxA is located in the C-terminal and beta-wing regions of this phospholipase A2. Synthetic peptides comprising residues of the deduced anticoagulant site of AtxA provide a basis to synthesize novel anticoagulant drugs.  相似文献   
997.
A pathway from enteral L-glutamine as substrate for L-arginine synthesis is suggested by previous studies. L-Glutamine and L-glutamine dipeptides exhibit numerous beneficial effects in experimental and clinical studies. In trauma patients, enteral L-glutamine supply increased plasma L-arginine. The present study was designed to quantify the contribution of L-glutamine to the de novo L-citrulline and L-arginine synthesis in mice when L-glutamine is administered in a high dose of labeled L-glutamine or L-alanyl-L-glutamine by the enteral or parenteral route. For this purpose, male Swiss mice (n = 43) underwent a laparotomy, and catheters were inserted for sampling and infusion. A primed, constant, and continuous infusion of L-alanyl-L-[2-(15)N]glutamine (dipeptide groups) or L-[2-(15)N]glutamine (free L-glutamine groups), simultaneously with L-[ureido-(13)C,(2)H(2)]citrulline and L-[guanidino-(15)N(2),(2)H(2)]arginine, was given (steady-state model). Mice received the L-glutamine tracers intravenously (jugular vein) or enterally (duodenum). Enrichments of metabolites were measured by LC-MS. Arterial L-glutamine concentrations were the highest in the intravenous dipeptide group. L-Glutamine was converted to L-citrulline and L-arginine when L-[2-(15)N]glutamine and L-alanyl-L-[2-(15)N]glutamine were given by enteral or parenteral route. The contribution of L-glutamine to the de novo synthesis of L-citrulline and L-arginine was higher in the enteral groups when compared with the intravenous groups (P < 0.005). Therefore, the route of administration (enteral or parenteral) affects the contribution of L-glutamine, provided as free molecule or dipeptide, to the de novo synthesis of L-arginine in mice.  相似文献   
998.
The abundance, identities, and degradation abilities of indigenous polychlorinated biphenyl (PCB)-degrading bacteria associated with five species of mature trees growing naturally in a contaminated site were investigated to identify plants that enhance the microbial PCB degradation potential in soil. Culturable PCB degraders were associated with every plant species examined in both the rhizosphere and root zone, which was defined as the bulk soil in which the plant was rooted. Significantly higher numbers of PCB degraders (2.7- to 56.7-fold-higher means) were detected in the root zones of Austrian pine (Pinus nigra) and goat willow (Salix caprea) than in the root zones of other plants or non-root-containing soil in certain seasons and at certain soil depths. The majority of culturable PCB degraders throughout the site and the majority of culturable PCB degraders associated with plants were identified as members of the genus Rhodococcus by 16S rRNA gene sequence analysis. Other taxa of PCB-degrading bacteria included members of the genera Luteibacter and Williamsia, which have not previously been shown to include PCB degraders. PCB degradation assays revealed that some isolates from the site have broad congener specificities; these isolates included one Rhodococcus strain that exhibited degradation abilities similar to those of Burkholderia xenovorans LB400. Isolates with broad congener specificity were widespread at the site, including in the biostimulated root zone of willow. The apparent association of certain plant species with increased abundance of indigenous PCB degraders, including organisms with outstanding degradation abilities, throughout the root zone supports the notion that biostimulation through rhizoremediation is a promising strategy for enhancing PCB degradation in situ.  相似文献   
999.
L1 elements are mammalian retrotransposons contributing to genome evolution and causing rare mutations in human. We describe a de novo insertion of an L1 element into the dystrophin gene resulting in skipping of exon 44 and causing Duchenne muscular dystrophy in a boy. The L1 element was rearranged due to the twin-priming mechanism, but contrary to all described L1 rearrangements the 5' region of the inverted L1 sequence ended within the poly(A) tail of the element. Furthermore, the target site for the insertion was located only 87 bp from the insertion site in another patient described previously. These findings can contribute to the understanding of the mechanisms of L1 element rearrangement, and may support the notion that some subregions of the human genome could be preferred targets for retroelements using the L1 enzymatic machinery.  相似文献   
1000.
Canonical transient receptor potential proteins (TRPC) have been proposed to form homo- or heteromeric cation channels in a variety of tissues, including the vascular endothelium. Assembly of TRPC multimers is incompletely understood. In particular, heteromeric assembly of distantly related TRPC isoforms is still a controversial issue. Because we have previously suggested TRPC proteins as the basis of the redox-activated cation conductance of porcine aortic endothelial cells (PAECs), we set out to analyze the TRPC subunit composition of endogenous endothelial TRPC channels and report here on a redox-sensitive TRPC3-TRPC4 channel complex. The ability of TRPC3 and TRPC4 proteins to associate and to form a cation-conducting pore complex was supported by four lines of evidence as follows: 1) Co-immunoprecipitation experiments in PAECs and in HEK293 cells demonstrated the association of TRPC3 and TRPC4 in the same complex. 2) Fluorescence resonance energy transfer analysis demonstrated TRPC3-TRPC4 association, involving close proximity between the N terminus of TRPC4 and the C terminus of TRPC3 subunits. 3) Co-expression of TRPC3 and TRPC4 in HEK293 cells generated a channel that displayed distinct biophysical and regulatory properties. 4) Expression of dominant-negative TRPC4 proteins suppressed TRPC3-related channel activity in the HEK293 expression system and in native endothelial cells. Specifically, an extracellularly hemagglutinin (HA)-tagged TRPC4 mutant, which is sensitive to blockage by anti-HA-antibody, was found to transfer anti-HA sensitivity to both TRPC3-related currents in the HEK293 expression system and the redox-sensitive cation conductance of PAECs. We propose TRPC3 and TRPC4 as subunits of native endothelial cation channels that are governed by the cellular redox state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号